UNIVERSITY OF COSTA RICA EXPLORES AEROSPACE RESEARCH WITH CLEARPATH ROBOTICS' PLATFORM
Novel Mars navigation algorithm is being validated on Husky A200
(Kitchener, ON, Canada - Oct 11, 2013) Dr. Geovanni Martinez from the University of Costa Rica has developed a novel visual odometer algorithm for accurate and more efficient tracking of Mars rover navigation. Dr. Martinez is utilizing Clear path Robotics' Husky to test and validate the algorithm that uses one-stage maximum-likelihood estimation, rather than traditional two-stage algorithms.
"It's fantastic to witness breakthrough research of this nature, and to know that it is being validated and furthered because of our mobile robotic platform," said Matt Rendall, Chief Executive Officer at Clearpath Robotics.
Dr. Martinez' team is creating a real time image acquisition system consisting of three IEEE-1394 cameras. The system is being developed under Ubuntu 12.04.2 LTS, ROS Fuerte and the programing language C". The image acquisition system corrects, in real time, the radial and tangential distortions due to the camera lens. With regard to the hardware, Dr. Martinez commented, "We like Husky A200 because the software for image acquisition, and driving the robot, was easy to implement using ROS. It saved us a lot of development time. Additionally, it is strong enough to be driven in extreme environments."
Using the algorithm, the rover's motion will be estimated by maximizing the conditional probability of the frame to frame intensity differences at the observation points. The conditional probability is computed by expanding the intensity signal by a Taylor series and neglecting the nonlinear terms. This results in the well-known optical flow constraint, as well as using a linearized 3D observation point position transformation, which transforms the 3D position of an observation point before motion into its 3D position after motion given the rover's motion parameters. Perspective projection of the observation points into the image plane and zero-mean Gaussian stochastic intensity errors at the observation points are also assumed.
About Clearpath Robotics
Clearpath Robotics, a global leader in unmanned vehicle robotics for research and development, is dedicated to automating the world's dullest, dirtiest, and deadliest jobs. The Company serves leading researchers in over 30 countries worldwide in academic, corporate and military environments. Recognizing the value of future innovation, Clearpath Robotics established PartnerBot, a grant program to support university robotics research teams, internationally. Clearpath Robotics provides robust solutions that are engineered for performance, designed for customization, and built for open source. Visit Clearpath Robotics at www.clearpathrobotics.com, follow us on Twitter @clearpathrobots or like us on Facebook
Featured Product

Model TR1 Tru-Trac
The Model TR1 Tru-Trac® linear measurement solution is a versatile option for tracking velocity, position, or distance over a wide variety of surfaces. An integrated encoder, measuring wheel, and spring-loaded torsion arm in one, compact unit, the Model TR1 is easy to install. The spring-loaded torsion arm offers adjustable torsion load, allowing the Model TR1 to be mounted in almost any orientation - even upside-down. The threaded shaft on the pivot axis is field reversible, providing mounting access from either side. With operating speeds up to 3000 feet per minute, a wide variety of configuration options - including multiple wheel material options - and a housing made from a durable, conductive composite material that minimizes static buildup, the Model TR1 Tru-Trac® is the ideal solution for countless applications.