Autonomous Underground Mining Vehicles Are a Thing Now

Depending on how tests of below-ground and above-ground equipment progress, multiple technologies could be incorporated into single vehicles to make them maximally adaptable to operator needs.

Mining 24 Hours a Day with Robots

Tom Simonite for MIT Technology Review:  Each of these trucks is the size of a small two-story house. None has a driver or anyone else on board. Mining company Rio Tinto has 73 of these titans hauling iron ore 24 hours a day at four mines in Australia’s Mars-red northwest corner. At this one, known as West Angelas, the vehicles work alongside robotic rock drilling rigs. The company is also upgrading the locomotives that haul ore hundreds of miles to port—the upgrades will allow the trains to drive themselves, and be loaded and unloaded automatically. Rio Tinto intends its automated operations in Australia to preview a more efficient future for all of its mines—one that will also reduce the need for human miners. The rising capabilities and falling costs of robotics technology are allowing mining and oil companies to reimagine the dirty, dangerous business of getting resources out of the ground.   Cont'd...

Gemini-Scout Mine Rescue Robot

Reliability, ability to travel across varied terrains, and accurate operation are essential elements for the drive system and camera controls on mining rescue robots.

Robots Explore Dangerous Mines with Novel Sensor Fusion Technology

The 3D Riegl scanning laser range finder and an Acumine 2D scanning millimeter wave radar were transported on Husky and used to record video footage and densely sampled data sets. The data is being submitted to the International Journal of Robotics Research to ensure that this insight and information is available to the robotics community.

Records 1 to 4 of 4

Featured Product

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

The ST Robotics Workspace Sentry robot and area safety system are based on a small module that sends an infrared beam across the workspace. If the user puts his hand (or any other object) in the workspace, the robot stops using programmable emergency deceleration. Each module has three beams at different angles and the distance a beam reaches is adjustable. Two or more modules can be daisy chained to watch a wider area. "A robot that is tuned to stop on impact may not be safe. Robots where the trip torque can be set at low thresholds are too slow for any practical industrial application. The best system is where the work area has proximity detectors so the robot stops before impact and that is the approach ST Robotics has taken," states President and CEO of ST Robotics David Sands.