Intel camera gives robots 3D vision

Bot-maker Savioke announces an open-source wrapper for Intel's RealSense Camera, adding another low-cost 3D sensing solution to the roboticist's toolkit. The wrapper will allow developers to make use of the RealSense Camera, which enables robots to sense rich three-dimensional environments. "Intel RealSense Cameras bring great low-cost depth sensing to robotics, in a platform that is widely available and easy to integrate using ROS," says Steve Cousins, CEO of Savioke. Until recently, bot makers looking to incorporate 3D sensing on the cheap have relied on a sensor made by Israeli company PrimeSense. But in late 2013 PrimeSense was acquired by Apple for $350M, an indication of just how much potential the Cupertino-based giant sees in 3D sensing technology. Since the acquisition, robot developers have been eager for a flexible and cheap depth sensor. Intel, meanwhile, is making an aggressive move into the world of robotics, and the company was thrilled to offer ROS support for RealSense. 

Humanoid robot negotiates outdoor, rough terrain with ease

Boston Dynamics have developed the "Atlas" robot a highly mobility, humanoid robot designed to negotiate outdoor, rough terrain.  Here is a video showing "Atlas" courtesy euronews.

Gecko-inspired technology for 'climbing' space robots

MIT researchers have designed a human-machine interface that allows an exoskeleton-wearing human operator to control the movements and balance of a bipedal robot. The technology could allow robots to be deployed to a disaster site, where the robot would explore the area, guided by a human operator from a remote location. "We'd eventually have someone wearing a full-body suit and goggles, so he can feel and see everything the robot does, and vice versa," said PhD student Joao Ramos of Massachusetts Institute of Technology's Department of Mechanical Engineering. "We plan to have the robot walk as a quadruped, then stand up on two feet to do difficult manipulation tasks such as open a door or clear an obstacle," Ramos said.   Cont'd...

Giving robots a more nimble grasp

Engineers use the environment to give simple robotic grippers more dexterity. Engineers at MIT have now hit upon a way to impart more dexterity to simple robotic grippers: using the environment as a helping hand. The team, led by Alberto Rodriguez, an assistant professor of mechanical engineering, and graduate student Nikhil Chavan-Dafle, has developed a model that predicts the force with which a robotic gripper needs to push against various fixtures in the environment in order to adjust its grasp on an object.

Robo-Sabotage Is Surprisingly Common

By Matt Beane for MIT Technology Review:  I think perhaps there’s something else at work here. Beyond building robots to increase productivity and do dangerous, dehumanizing tasks, we have made the technology into a potent symbol of sweeping change in the labor market, increased inequality, and recently the displacement of workers. If we replace the word “robot” with “machine,” this has happened in cycles extending well back through the Industrial Revolution. Holders of capital invest in machinery to increase production because they get a better return, and then many people, including some journalists, academics, and workers cry foul, pointing to the machinery as destroying jobs. Amidst the uproar, eventually there are a few reports of people angrily breaking the machines. Two years ago, I did an observational study of semiautonomous mobile delivery robots at three different hospitals. I went in looking for how using the robots changed the way work got done, but I found out that beyond increasing productivity through delivery work, the robots were kept around as a symbol of how progressive the hospitals were, and that when people who’d been doing similar delivery jobs at the hospitals quit, their positions weren’t filled.   Cont'd...

3D printing is not the miracle we were promised

Mike Murphy for Quartz:  3D printing has been hailed as the future of manufacturing for years now. Consumers and investors were sold on the idea of being able to print anything at any time from a little box in their houses. But that Jetsons-like vision hasn’t come to pass. The 3D printers available to consumers are great for making small prototypes or tchotchkes. But they’re still slow, inaccurate and generally only print one material at a time. And that’s not going to change any time soon. That reality is setting in for 3D printer makers. Stratasys, which owns MakerBot and is one of the world’s largest manufacturers of commercial and industrial 3D printers, announced its fifth straight quarter of losses today. 3D Systems, which was founded by the man who invented 3D printing—Chuck Hull—isn’t faring much better. Wall Street’s interest in 3D printing seems to have peaked in the first week of 2014: The stock prices for both Stratasys and 3D Systems were at their highest on January 3 last year. Stratasys had completed the purchase of MakerBot—which has been called the “Apple” of 3D printing—about three months earlier, and it looked as if things were on the up. But a little over a year later, MakerBot laid off a fifth of its staff, closed its stores, and started focusing on selling to schools. As it stands, it seems that the market is retracting to industrial printers, for companies that benefit from rapidly prototyping objects. 3D printing makes a lot of sense when companies can quickly model and print their ideas—anything from new bike helmets to car doors or sprockets. These are where (relatively) cheap, disposable plastic models thrive, as companies can churn out all the models they need, and then turn to more traditional automated processes, like CNC milling or vacuum forming, to build their final product at scale, using materials that will actually last.   Cont'd...

3D Printing and Technology Fund Adds Robotics to the Mix

BY BRIAN KRASSENSTEIN for 3DPrint.com:  There are several ways one can diversify their holdings within any market. An investor could simply research which firms are out there within a particular industry, like the 3D printing industry, and invest small amounts into each by purchasing shares. The easiest way, however, would be to find a fund that’s going to do all the work for you, managed by someone who likely has more experience in the market than you do.  There is currently only one main fund which concentrates their efforts primarily on the 3D printing space, the 3D Printing and Technology Fund (TDPNX), managed by CEO Alan M. Meckler, and his son John M. Meckler.  While the fund is currently down approximately 13% YTD, it has outperformed the two largest pure play 3D printing stocks, 3D Systems (NYSE:DDD) and Stratasys (NASDAQ:SSYS), significantly. 3D Systems is down over 44% on the year, and Stratasys down a staggering 58.5%. Today the fund is making a major change, one that the Mecklers feel should increase opportunity for investors. Up until this point, the fund allocated at least 80% of their capital to what they defined as ‘3D printing companies’ and ‘technology companies’. Today this changed, along with the fund’s official name. The fund’s new name will now be ‘3D Printing, Robotics and Technology Fund,’ while going forward 80% of their capital will now be allocated to what they define as ‘3D printing companies,’ ‘robotics companies’ and ‘technology companies.’   Cont'd...

Robotics Programs Increasingly Becoming Popular in China

Manny Salvacion for YIBADA:  Robotics education and its important application in engineering has reportedly taken off in China over the past years, as robots have become increasingly popular among people, the China Daily reported. Liang Yujun, head of the science education department at Beijing Youth Center, said that there are nearly 300 primary and middle schools in Beijing offering robotics-related curricula and activities now. Liang is in charge of robotics education in the capital and also the general referee of the national youth robotics activity. According to Liang, only about 20 schools had such curricula and activities in the early 2000s. The report said that about 3,000 registrants from 160 schools and extracurricular teams participated in the 2014 Beijing Student Robotic Intelligence Competition. "We have to hold the competition in one of the city's largest sports fields now, which can accommodate the increasing number of players," said Liu Yi, who is charge of running the competition at the Youth Center in Haidian District. Liu said that the competition, which began in 2012, reflects the dramatic growth of robotics education in the country. Cont'd...

Could This Machine Push 3-D Printing into the Manufacturing Big Leagues?

Neil Hopkinson, a professor of mechanical engineering at the University of Sheffield in the United Kingdom, has been developing the new method, called high-speed sintering, for over a decade.  Laser sintering machines build objects by using a single-point laser to melt and fuse thin layers of powdered polymer, one by one. Hopkinson replaced the laser system, which is both expensive and slow, with an infrared lamp and an ink-jet print head. The print head rapidly and precisely delivers patterns of radiation-absorbing material to the powder bed. Subsequently exposing the powder to infrared light melts and fuses the powder into patterns, and the machine creates thin layers, one by one—similar to the way laser sintering works, but much faster. Hopkinson’s group has already shown that the method works at a relatively small scale. They’ve also calculated that, given a large enough building area, high-speed sintering is “on the order of 100 times faster” than laser sintering certain kinds of parts, and that it can be cost competitive with injection molding for making millions of small, complex parts at a time, says Hopkinson. Now the group will actually build the machine, using funding from the British government and a few industrial partners.  Cont'd...

The Age of Smart, Safe, Cheap Robots Is Already Here

Robots have been doing tough jobs for over half a century, mostly in the automotive sector, but they’ve probably had a bigger impact in Hollywood movies than on factory floors. That’s about to change. Today’s robots can see better, think faster, adapt to changing situations, and work with a gentler touch. Some of them are no longer bolted to the factory floor, and they’re moving beyond automotive manufacturing. They’re also getting cheaper. These improvements are helping to drive demand. In fact, we expect the global industrial robot population to double to about four million by 2020, changing the competitive landscape in dozens of fields — from underground mining to consumer goods and aerospace manufacturing. Robots will allow more manufacturers to produce locally and raise productivity with a knowledge-based workforce.   Cont'd...

Rockwell brings factory-automation tools to smartphones, tablets

By John Schmid of the Journal Sentinel:  The Texas facility that mass-produces State Fair corn dogs and Jimmy Dean Pancakes & Sausage on a Stick retooled itself recently as a hyper-automated smart factory. It installed 1,500 sensors to collect gigabytes of data on everything from raw meat inventories to wastewater and electrical usage. Then the Fort Worth factory took one extra step into the future of industrial technology: It added software that transmits all of that real-time data onto smartphones and tablets, making it possible for plant managers to monitor their production network from anywhere on the factory floor — and during coffee breaks or vacations, as well. If they choose — so far, most don't — this new breed of mobile managers can even operate factory equipment remotely, shutting off pumps or speeding up production lines. Technology has made that sort of operation as easy as playing a smartphone video game, but it can be reckless because a lot of equipment can interfere with or hurt those who are physically present. It's only a matter of time, some say, before factory controls migrate to Google Glass, the wearable displays mounted in eyeglass frames, or smart wristwatches. Cont'd...

Titan Robotics announces new high-quality large-scale 3D printer called The Atlas

Founded by mechanical engineer Clay Guillory, who calls himself “a mechanical engineer by day, and a mechanical engineer by night,” Titan Robotics focuses on doing one thing and one thing very well: designing large 3D printers that are designed to last a lifetime.  Among other applications that Clay has used his 3D printing know-how towards include prosthetic hands - which started as a request from a mother whose 8-year old boy was in need of a low-cost solution. Titan Robotics’ Atlas 3D printer was named after the famous Greek god who was known for fighting alongside the Titans and then later charged to bear the weight of the heavens on his shoulders.  According to Clay, “the strength of this Greek god is an accurate depiction of the strength and size of this new 3D printer”.   With over a year in development including real-world testing in various manufacturing facilities, the Atlas has proven to be a highly-accurate 3D printer that is capable of printing large prototypes reliably over time.  According to the company, one beta user documented printing an extremely large accurate and functioning prototype with a total recorded print time of just over 200 hours.    

Kickstarted at $3M, How Tiko is Set to Be the Best and Cheapest 3D Printer

Sage Lazzaro for The Observer:  When we last talked with the folks from Makerbot, we discussed how 3D printers will soon be household appliances as common as microwaves, vacuums and well, regular printers. But they agreed that certain design and affordability standards need to be met first. Little did we know, a 3D printer set to meet those standards was being developed in Toronto as we spoke.   We’re talking about Tiko, the meticulously designed and shockingly affordable “unibody” 3D printer that’s had the industry’s experts and publications buzzing. The $179 3D printer surpassed its Kickstarter goal of $100,000 in three hours and finished up its campaign last Friday with a total of just under $3 million in pledges.   Tiko looks nothing like any 3D printer you’ve seen before. While most have a multipart frame, Tiko’s frame is one piece with three sets of arms that move in unison, essentially eliminating issues of misalignment or inaccurate prints associated with other products. The New York Observer spoke with Tiko founder and CEO Matt Gajkowski, who explained that Tiko’s unique design is actually essential to its affordability.   Cont'd...

Robotics Emerge to Power Next-Generation Industrial Environments

Dan Dibbern and Laura Studwell for Quality Magazine:  Industrial robots are expected to be the focus for investment in factory automation. According to the International Federation of Robotics (IFR), investment in industrial robots is expected to grow at an annual rate of 12% from 2015 to 2017. The packaging industry is experiencing a surge in robotic integration throughout primary, secondary and tertiary packaging—from processing, assembly, labeling and cartoning to case packing and palletizing. The driving force behind the surge in robotics sales growth in North America is the Food Safety Modernization Act (FSMA). The FSMA is requiring companies to introduce automated machinery and components into the production process to help eliminate potential product quality and integrity issues. With the FSMA about to publicly release its requirements, the use of robots in packaging is at the point of takeoff. And with recent technical advances in robotics helping to power the new wave of interest, companies are experiencing first-hand that robots are faster, smarter and more affordable than ever before.

Frankenimage

From David Stolarsky: The goal of Frankenimage is to reconstruct input (target) images with pieces of images from a large image database (the database images). Frankenimage is deliberately in contrast with traditional photomosaics. In traditional photomosaics, more often than not, the database images that are composed together to make up the target image are so small as to be little more than glorified pixels. Frankenimage aims instead for component database images to be as large as possible in the final composition, taking advantage of structure in each database image, instead of just its average color. In this way, database images retain their own meaning, allowing for real artistic juxtaposition to be achieved between target and component images... ( full description and pseudo code )

Records 241 to 255 of 279

First | Previous | Next | Last

Personal & Service Robots - Featured Product

Maplesoft - Free Whitepaper: Developing a Robot Model using System-Level Design

Maplesoft - Free Whitepaper: Developing a Robot Model using System-Level Design

This paper uses NAO, the humanoid robot from Aldebaran Systems, to demonstrate how MapleSim can be used to develop a robot model, and how the model can be further analyzed using the symbolic computation engine within Maple.