DARPA Announces Winners of Virtual Robotics Challenge (VRC)

The goal of the DARPA Robotics Challenge (DRC) is to generate groundbreaking research and development so that future robotics can perform the most hazardous activities in future disaster response operations, in tandem with their human counterparts, in order to reduce casualties, avoid further destruction, and save lives.

Disaster response robots require multiple layers of software to explore and interact with their environments, use tools, maintain balance and communicate with human operators. In the Virtual Robotics Challenge (VRC), competing teams applied software of their own design to a simulated robot in an attempt to complete a series of tasks that are prerequisites for more complex activities.

Twenty-six teams from eight countries qualified to compete in the VRC, which ran from June 17-21, 2013. DARPA had allocated resources for the six teams that did best, but in an interesting twist, good sportsmanship and generosity will allow members of the top nine teams, listed below, to move forward:

  1. Team IHMC, Institute for Human and Machine Cognition, Pensacola, Fla. (52 points)
  2. WPI Robotics Engineering C Squad (WRECS), Worcester Polytechnic Institute, Worcester, Mass. (39 points)
  3. MIT, Massachusetts Institute of Technology, Cambridge, Mass. (34 points)
  4. Team TRACLabs, TRACLabs, Inc., Webster, Texas (30 points)
  5. JPL / UCSB / Caltech, Jet Propulsion Laboratory, Pasadena, Calif. (29 points)
  6. TORC, TORC / TU Darmstadt / Virginia Tech, Blacksburg, Va. (27 points)
  7. Team K, Japan (25 points)
  8. TROOPER, Lockheed Martin, Cherry Hill, N.J. (24 points)
  9. Case Western University, Cleveland, Ohio (23 points) 

Featured Product

Palladyne IQ  - Unlocking new frontiers for robotic performance.

Palladyne IQ - Unlocking new frontiers for robotic performance.

Palladyne IQ is a closed-loop autonomy software that uses artificial intelligence (AI) and machine learning (ML) technologies to provide human-like reasoning capabilities for industrial robots and collaborative robots (cobots). By enabling robots to perceive variations or changes in the real-world environment and adapt to them dynamically, Palladyne IQ helps make robots smarter today and ready to handle jobs that have historically been too complex to automate.