Co-Learning of Task and Sensor Placement for Soft Robotics

 

Unlike rigid robots which operate with compact degrees of freedom, soft robots must reason about an infinite dimensional state space. Mapping this continuum state space presents significant challenges, especially when working with a finite set of discrete sensors. Reconstructing the robot’s state from these sparse inputs is challenging, especially since sensor location has a profound downstream impact on the richness of learned models for robotic tasks. In this work, we present a novel representation for co-learning sensor placement and complex tasks. Specifically, we present a neural architecture which processes on-board sensor information to learn a salient and sparse selection of placements for optimal task performance. We evaluate our model and learning algorithm on six soft robot morphologies for various supervised learning tasks, including tactile sensing and proprioception. We also highlight applications to soft robot motion subspace visualization and control. Our method demonstrates superior performance in task learning to algorithmic and human baselines while also learning sensor placements and latent spaces that are semantically meaningful.

 

Authors: Andrew Spielberg*, Alexander Amini*, Lillian Chin, Wojciech Matusik, and Daniela Rus Published in: IEEE Robotics and Automation Letters (RA-L), with presentation in RoboSoft 2021.

 

Full Video:

Featured Product

KNF - Automation Technology Requires Reliable and Durable Pumps

KNF - Automation Technology Requires Reliable and Durable Pumps

KNF vacuum pumps for automation applications are designed for a long service life, with micro gas pumps used as cobot pumps achieving more than 20,000 hours. The latest generation of KNF brushless DC motors has an innovative bearing design that withstands high mechanical loads. This technical strength protects the vacuum pump's longevity, especially with fast switching cycles.