The Factory-in-a-Day Project

From  Factory-in-a-Day's page : Small and medium-sized enterprises in Europe mostly refrain from using advanced robot technology. The EU-project Factory-in-a-Day aims to change this by developing a robotic system that can be set up and made operational in 24 hours and is flexible, leasable and cheap. The project has a budget of 11 million euros for four years, 7.9 million of which will be funded by the European Union as part of the FP7 programme ‘Factory of the Future’. The international consortium comprises 16 partners and the coordinating university is Delft University of Technology (TU Delft). The project will start on 8 October 2013 with a formal kick- off meeting in Delft. Within 24 hours The Factory-in-a-Day-project will provide a solution to these problems: a robot that can be set up and operational in 24 hours. SME companies can use the robot for a specific job and their staff can learn how to work closely together with the robot and thus optimize their production. “With the technological and organizational innovations of the Factory-in-a-Day project, we hope to fundamentally change the ways in which robots are used in the manufacturing world”, says project coordinator Martijn Wisse, Associate Professor at TU Delft. How does it work? What will such an installation day look like? First of all, before the robot is actually taken to the SME premises, a system integrator analyzes which steps in the process can be taken over by the robot. In most cases the repetitive work is done by the robot while the human worker carries out the more flexible, accurate tasks and deals with problem- solving. Customer-specific hardware-components are 3D-printed and installed on the grippers of the robot. The robot is then brought to the factory and set up, and any auxiliary components such as cameras are also set up in the unaltered production facilities. The robot will be connected to the machinery software through a brand-independent software system. After that, the robot is taught how to perform his set of tasks, for example how to grasp an object. Therefore, the operator will physically interact with the robot. A set of predefined skills will be available, rather like Apps for smart phones. Finally, the robot is operational and the human co-workers receive their training -- all in just 24 hours.

3D Printing Helps German Manufacturer Seuffer Cut Tooling Costs for Prototype Parts by 97%

Companies worldwide are looking to introduce significant efficiencies to their manufacturing processes when introducing new products, and are discovering the many benefits of additive manufacturing, also known as 3D printing.

All Things Plastics Injection Molding

Many injection molders have begun their Continuous Improvement Journey and as these small teams study reduction in waste, redundancy, and efficiencies, they bring forward ideas to make more use of production robots.

Global Future 2045 Takes A Hard Look At Today

Bottom line of all of the interfaith / spiritual speakers was to emphasize that we are preoccupied with the "how" of change and not the "why."

Cloud Manufacturing

As the automation industry begins its reach into the cloud, manufacturing communities will not only improve productivity, they will begin to reclaim the prominence the industry once claimed in the economy.

Electroadhesion

Grabits electroadhesion grippers are an enabling technology. We enable mobile robots to have energy efficient manipulation where conventions like vacuum are not feasible.

3D Home Printer From 3D@Home

The consumer electronics show CES is this week so we are probably going to see a couple new 3D printers announced. MakerBot has been teasing a new version of their Thing-O-Matic and today 3D@Home announced their Cube printer. The printer will cost $1,299 and print standard .STL files to print out ABS plastic models. 3D@Home also plans to offer a print on demand service for larger models.

Records 4546 to 4552 of 4552

First | Previous

Mobile & Service Robots - Featured Product

Parker LORD MicroStrain Sensing System

Parker LORD MicroStrain Sensing System

The new complete inertial navigation solution comes with GNSS/INS 3DMGQ7 sensor, 3DMRTK correction modem and real time SensorCloud RTK correction network. The sensor comes with Dual antenna GNSS, tactical grade IMU with centimeter-level accuracy with RTK. Low profile and light weight at 78 grams, this sensor is The sensor is optimized for size and weight in Unmanned Ground Vehicles, mobile robots and autonomous vehicles. The network interface 3DMRTK modem is seamlessly integrated into the 3DMGQ7 sensor supports industry-standard NMEA and RTCM 3.1 protocols. The network RTK support comes with cellular data plan. The SensorCloud RTK is a cloud-based RTK correction system with private encrypted data stream. Check out our G Series and C Series OEM products.