deepsense.ai's Research on Robotics to be Presented at Prestigious 1st Annual Conference on Robot Learning

deepsense.ai's paper has been recognized by the General Chairs of the Conference on Robot Learning (CoRL) as one of 11 in the reinforcement learning and robotics category. It will be presented in November at Google's headquarters in San Francisco.

PALO ALTO, California, Sept. 14, 2017 /PRNewswire/ -- In a recent research project, members of deepsense.ai's machine learning team, Maciej Klimek, Henryk Michalewski and Piotr Miłoś, trained a robotic arm to grip a can of coke using reinforcement learning - in other words, through trial and error. The particular method the team developed was selected for presentation at the prestigious new robotics conference, CoRL 2017. The conference focuses on the intersection of robotics and machine learning and is being organized with the help of the International Foundation of Robotics Research (IFRR). deepsense.ai's 'Hierarchical Reinforcement Learning with Parameters' will be featured along with 10 other standout archival papers on reinforcement learning and robotics selected for presentation at the conference and publication after the event.


The novelty of the approach presented in the paper comes from a clever division between simpler micro-actions and general goals. The methods developed by deepsense.ai's team are not limited to robotic arms, but could be used, for example, to train humanoid robots to combine single steps into a walk or a run.

According to Henryk Michalewski, Senior Data Scientist at deepsense.ai and an assistant professor at the University of Warsaw, "In recent years reinforcement learning has brought a number of striking new ideas to practical computer science. First, the DeepMind team managed to create bots which achieved superhuman performance in arcade games. Then, using a more sophisticated training methodology, they created a bot which beat the top human player at Go. A few weeks ago Open AI showed a bot that defeated the best human players at DOTA 2. At deepsense.ai, we also research reinforcement learning used in robotics, and we're happy to have our work recognized on the international AI scene".

Watch short videos with the robotic arm actions simulated during research: https://goo.gl/xMCjdL


About deepsense.ai


deepsense.ai delivers AI solutions and supports organizations in unlocking their data potential at all stages. The company created Neptune, a Machine Learning Lab provided as a service for data scientists to speed up the development and productionization of machine learning models.

Featured Product

3D Vision: Ensenso B now also available as a mono version!

3D Vision: Ensenso B now also available as a mono version!

This compact 3D camera series combines a very short working distance, a large field of view and a high depth of field - perfect for bin picking applications. With its ability to capture multiple objects over a large area, it can help robots empty containers more efficiently. Now available from IDS Imaging Development Systems. In the color version of the Ensenso B, the stereo system is equipped with two RGB image sensors. This saves additional sensors and reduces installation space and hardware costs. Now, you can also choose your model to be equipped with two 5 MP mono sensors, achieving impressively high spatial precision. With enhanced sharpness and accuracy, you can tackle applications where absolute precision is essential. The great strength of the Ensenso B lies in the very precise detection of objects at close range. It offers a wide field of view and an impressively high depth of field. This means that the area in which an object is in focus is unusually large. At a distance of 30 centimetres between the camera and the object, the Z-accuracy is approx. 0.1 millimetres. The maximum working distance is 2 meters. This 3D camera series complies with protection class IP65/67 and is ideal for use in industrial environments.