Portable Danish Robot Expands Production With California Manufacturer

Total setup time including all programming and tooling took eight hours. Moving the robot from one application to the next now takes about 30 minutes.

After 5,000 Years, Automation Finds Its Way Into The "Lost Wax Process"

With home-grown innovation and ABB robots, MPI, Inc. has discovered the secret to incredible increases in productivity and quality for today's most competitive foundries.

Six Axis Robots Benefit Plastic Molders

Six axis robots provide all the advantages of the simple Cartesian systems (high speed, slim forearm and simple programming) but have none of the limiting features that restrict the incorporation of additional tasks. The 6 degrees of freedom in movement provides an extremely large work envelope within a small footprint.

Flexible Seals for Robotics Systems

The Roxtec system is based on a rubber-sealing module that consists of two halves, a center core, and removable black and blue layers. This construction ensures adaptability to different sizes of cables and pipes.

ATLAS: DARPA and Boston Dynamics New Humanoid

IEEE Spectrum has updated information and lots of new  images of  ATLAS: ATLAS was developed for DARPA by Boston Dynamics. Software-focused teams from Tracks B and C of the DARPA Robotics Challenge will use the robot to compete in the first physical competition of the Challenge in December 2013 at the Homestead-Miami Speedway.   

Goals For NASA's 2020 Mars Rover Released

Jet Propulsion Laboratory: The rover NASA will send to Mars in 2020 should look for signs of past life, collect samples for possible future return to Earth, and demonstrate technology for future human exploration of the Red Planet, according to a report provided to the agency. The 154-page document was prepared by the Mars 2020 Science Definition Team, which NASA appointed in January to outline scientific objectives for the mission. The team, composed of 19 scientists and engineers from universities and research organizations, proposed a mission concept that could accomplish several high-priority planetary science goals and be a major step in meeting President Obama's challenge to send humans to Mars in the 2030s. "Crafting the science and exploration goals is a crucial milestone in preparing for our next major Mars mission," said John Grunsfeld, NASA's associate administrator for science in Washington. "The objectives determined by NASA with the input from this team will become the basis later this year for soliciting proposals to provide instruments to be part of the science payload on this exciting step in Mars exploration." NASA will conduct an open competition for the payload and science instruments. They will be placed on a rover similar to Curiosity, which landed on Mars almost a year ago. Using Curiosity's design will help minimize mission costs and risks and deliver a rover that can accomplish the mission objectives. The team's report details how the rover would use its instruments for visual, mineralogical and chemical analysis down to microscopic scale to understand the environment around its landing site and identify biosignatures, or features in the rocks and soil that could have been formed biologically. "The Mars 2020 mission concept does not presume that life ever existed on Mars," said Jack Mustard, chairman of the Science Definition Team and a professor at the Geological Sciences at Brown University in Providence, R.I. "However, given the recent Curiosity findings, past Martian life seems possible, and we should begin the difficult endeavor of seeking the signs of life. No matter what we learn, we would make significant progress in understanding the circumstances of early life existing on Earth and the possibilities of extraterrestrial life." "The Mars 2020 mission will provide a unique capability to address the major questions of habitability and life in the solar system," said Jim Green, director of NASA's Planetary Science Division in Washington. "This mission represents a major step towards creating high-value sampling and interrogation methods, as part of a broader strategy for sample returns by planetary missions."

Robot Vacuum Simulator 2013

From  Stolidus Simulations : Robot Vacuum Simulator 2013 is a groundbreaking simulator taking place in the incredible world of Robot Vacuum cleaners. The simulator puts you in the shoes of a Robot Vacuum cleaner and sends you on a journey through an appartment cleaning up the dust of man. Features: The most realistic robot vacuum simulator ever. Incredible single-player simulation Duel with your friends in 2 player mode A fully open world Fantastic music A main menu

Introducing German Aerospace Center's Biped TORO

Gizmag has a good write up about a new full body biped robot (TORO) that the engineers at the German Aerospace Center are currently working on. Gizmag article Project site (in english)

Rory McIlroy & The Robot In A Golf Challenge

Global Future 2045 Takes A Hard Look At Today

Bottom line of all of the interfaith / spiritual speakers was to emphasize that we are preoccupied with the "how" of change and not the "why."

Top 10 Questions to Consider Before Buying an Industrial Robot

The following document poses some of the questions that a robotic user should consider prior to selecting a robot and a robot programmer/installer.

Case Study: Machine Vision System Detects Defective Parts for Precision Stampings Supplier

Dimensional measurement is an essential step in the manufacture of Hexins stamped parts in order to ensure that each workpiece meets required tolerances.

DARPA Announces Winners of Virtual Robotics Challenge (VRC)

The goal of the DARPA Robotics Challenge (DRC) is to generate groundbreaking research and development so that future robotics can perform the most hazardous activities in future disaster response operations, in tandem with their human counterparts, in order to reduce casualties, avoid further destruction, and save lives. Disaster response robots require multiple layers of software to explore and interact with their environments, use tools, maintain balance and communicate with human operators. In the Virtual Robotics Challenge (VRC), competing teams applied software of their own design to a simulated robot in an attempt to complete a series of tasks that are prerequisites for more complex activities. Twenty-six teams from eight countries qualified to compete in the VRC, which ran from June 17-21, 2013. DARPA had allocated resources for the six teams that did best, but in an interesting twist, good sportsmanship and generosity will allow members of the top nine teams, listed below, to move forward: Team IHMC, Institute for Human and Machine Cognition, Pensacola, Fla. (52 points) WPI Robotics Engineering C Squad (WRECS), Worcester Polytechnic Institute, Worcester, Mass. (39 points) MIT, Massachusetts Institute of Technology, Cambridge, Mass. (34 points) Team TRACLabs, TRACLabs, Inc., Webster, Texas (30 points) JPL / UCSB / Caltech, Jet Propulsion Laboratory, Pasadena, Calif. (29 points) TORC, TORC / TU Darmstadt / Virginia Tech, Blacksburg, Va. (27 points) Team K, Japan (25 points) TROOPER, Lockheed Martin, Cherry Hill, N.J. (24 points) Case Western University, Cleveland, Ohio (23 points) 

Kinect 2.0 for Windows Developer Kit Program Preorder

You can apply to take part in the Kinect for Windows developer kit program. This program, which begins in November 2013, will provide developers with tools and a pre-release sensor as soon as possible so they can start building new applications before general availability in 2014. The program fee will be US$399 (or local equivalent) and offers the following benefits: Direct access to the Kinect for Windows engineering team via a private forum and exclusive webcasts Early SDK access (alpha, beta, and any updates along the way to release) Private access to all API and sample documentation A pre-release/alpha sensor A final, released sensor at launch There are a limited number of spots in the program. Applications must be completed by July 31, 2013, 9:00 A.M. (Pacific Time). Apply here .   For broad information about the new Kinect check out Wired's first look video .

MakerBot Sold To Stratasys

Bloomberg Businessweek : The 3D printing industry turned downright frothy Wednesday as Stratasys agreed to acquire the startup MakerBot for about $403 million. Founded in 1989, Stratasys is a 3D printing veteran used to selling large machines to industrial customers. Based in Brooklyn, MakerBot has operated on the opposite end of the spectrum, making $2,000 or so machines that can sit on a designer or consumer’s desk and print three-dimensional objects out of plastic using techniques not all that dissimilar from traditional inkjet printers.   The 3D printing industry has been consolidating as interest in the technology heats up. Stratasys acquired Objet, one of its main rivals, last year, while 3D Systems bought its rival Z Corp. The purchase of MakerBot could be seen as a lost opportunity for Hewlett-Packard, which many people in the 3D printing business have expected to enter the market, given its printing chops.   MakerBot will continue to operate independently. The company has been something of a grassroots player, getting its start on the back of open-source hardware designs and software. The company’s CEO and co-founder, Bre Pettis, has also served as the charismatic voice, more or less, of the 3D printing movement.

Records 2956 to 2970 of 3323

First | Previous | Next | Last

Featured Product

FAULHABER MICROMO - Impressive accuracy through the latest chip technology

FAULHABER MICROMO - Impressive accuracy through the latest chip technology

With the launch of the IEP3, FAULHABER expands its product line with an incremental encoder which, thanks to the latest chip technology, achieves a very high resolution and accuracy. With a diameter of just 8 mm, the IEP3 is very lightweight and compact yet still offers a resolution of up to 10,000 lines per revolution - made possible by the latest chip technology with high interpolation. In the standard version, the resolution is freely programmable from 1 - 4,096 lines per revolution. Moreover, the chip technology that is used ensures a high positional accuracy of typically 0.3 °m as well as a high repeatability of typically 0.05 °m thanks to accuracy compensation.