How to Select the Right Drive for Automated Vehicles

A full analysis of a wheel drives required performance, including peak torque for acceleration and average power needed for typical vehicle travel routines, is needed in order to choose the best wheel drive for an application.

First Robot Cop to join Dubai Police Force in May

Janice Williams for Newsweek: The first robot cop is expected to join Dubais police force in May. Officials in Dubai unveiled plans to introduce a robotic police officer to the United Arab Emirates during a policing forum recently and said they intend to have robot cops serving as about 25 percent of the force by 2030.

America may miss out on the next industrial revolution

Preparing for automation means investing in robotics   Nick Statt for The Verge:  Robots are inevitably going to automate millions of jobs in the US and around the world, but there’s an even more complex scenario on the horizon, said roboticist Matt Rendall. In a talk Tuesday at SXSW, Rendall painted a picture of the future of robotic job displacement that focused less on automation and more on the realistic ways in which the robotics industry will reshape global manufacturing. The takeaway was that America, which has outsourced much of its manufacturing and lacks serious investment in industrial robotics, may miss out on the world’s next radical shift in how goods are produced. That’s because the robot makers — as in, the robots that make the robots — could play a key role in determining how automation expands across the globe.   Full article:  

MassTech Grants $75,000 to MassRobotics in Support of Fast-Growing Robotics Cluster

At the recent launch of MassRobotics collaborative workspace, Tim Connelly, executive director/CEO of The Massachusetts Technology Collaborative (MassTech), announced that the Commonwealth of Massachusetts will provide a grant of up to $75,000 for the purchase of industrial manufacturing robots that will be used as shared development platforms for the startups and innovators housed at MassRobotics.

Six-legged robots faster than nature-inspired gait

Science Daily:  When vertebrates run, their legs exhibit minimal contact with the ground. But insects are different. These six-legged creatures run fastest using a three-legged, or "tripod" gait where they have three legs on the ground at all times -- two on one side of their body and one on the other. The tripod gait has long inspired engineers who design six-legged robots, but is it necessarily the fastest and most efficient way for bio-inspired robots to move on the ground? Researchers at EPFL and UNIL revealed that there is in fact a faster way for robots to locomote on flat ground, provided they don't have the adhesive pads used by insects to climb walls and ceilings. This suggests designers of insect-inspired robots should make a break with the tripod-gait paradigm and instead consider other possibilities including a new locomotor strategy denoted as the "bipod" gait. The researchers' findings are published in Nature Communications.   Cont'd...

Deep-Domain Conversational Artificial Intelligence

Conversational applications may seem simple on the surface, but building truly useful conversational experiences represents one of the hardest AI challenges solvable today.

Development of a Hydraulic Drive High-power Artificial Muscle

The artificial muscle that was developed using rubber tube and is extremely powerful but lightweight and has strong resistance to impact and vibration

Watch a new robot fly just like a bat

Lindzi Wessel for ScienceMag:  Forget drones. Think bat-bots. Engineers have created a new autonomous flying machine that looks and maneuvers just like a bat. Weighing only 93 grams, the robot’s agility comes from its complex wings made of lightweight silicone-based membranes stretched over carbon-fiber bones, the researchers report today in Science Robotics. In addition to nine joints in each wing, it sports adjustable legs, which help it steer by deforming the membrane of its tail.    Full Article:

Future Drones Will Fly as Silent as Owls, as Steady as Bees

Glenn McDonald for Seeker:  Want to know what drones of the future will look like? So does David Lentink, editor of Interface Focus, a journal that, as its title suggests, looks at the interface of different scientific disciplines. Each issue zeroes in on a particular intersection of physical sciences and life sciences and invites the world's top scholars to publish their latest work. The latest issue of Interface Focus brings together biologists and engineers to discuss a topic that's relatively straightforward and, well, pretty empirically cool: "It's completely focused on how animals fly and how that can help us build flying robots," said Lentink, assistant professor of mechanical engineering at Stanford.  Can't argue with that. The new issue features 18 newly published papers on various ways that engineers are borrowing ideas from nature to make the next generation of drones and aerial robots. Several of the papers detail prototype drones that have already been built and tested.   Cont'd...

Robots won't kill the workforce. They'll save the global economy.

Ruchir Sharma for The Washington Post:  The United Nations forecasts that the global population will rise from 7.3 billion to nearly 10 billion by 2050, a big number that often prompts warnings about overpopulation. Some have come from neo-Malthusians, who fear that population growth will outstrip the food supply, leaving a hungry planet. Others appear in the tirades of anti-immigrant populists, invoking the specter of a rising tide of humanity as cause to slam borders shut. Still others inspire a chorus of neo-Luddites, who fear that the “rise of the robots” is rapidly making human workers obsolete, a threat all the more alarming if the human population is exploding. Before long, though, we’re more likely to treasure robots than to revile them. They may be the one thing that can protect the global economy from the dangers that lie ahead.   Cont'd...

Metallic glass gears make for graceful robots

Science Daily:  Throw a baseball, and you might say it's all in the wrist.  For robots, it's all in the gears.   Gears are essential for precision robotics. They allow limbs to turn smoothly and stop on command; low-quality gears cause limbs to jerk or shake. If you're designing a robot to scoop samples or grip a ledge, the kind of gears you'll need won't come from a hardware store. At NASA's Jet Propulsion Laboratory in Pasadena, California, technologist Douglas Hofmann and his collaborators are building a better gear. Hofmann is the lead author of two recent papers on gears made from bulk metallic glass (BMG), a specially crafted alloy with properties that make it ideal for robotics.   Cont'd...

A new standard in robotics

Phys.org:  On the wall of Aaron Dollar's office is a poster for R.U.R. (Rossum's Universal Robots), the 1920 Czech play that gave us the word "robot." The story ends with the nominal robots seizing control of the factory of their origin and then wiping out nearly all of humanity. Dollar, fortunately, has something more cheerful in mind for the future of human-robot relations. He sees them as helpers in our daily lives—performing tasks like setting the table or assisting with the assembly of your new bookcase. But getting to the point where robots can work in the unstructured environment of our homes (as opposed to industrial settings) would take a major technological leap and a massive coordination of efforts from roboticists around the globe. The living room has been called the last frontier for robots—but first, the robotics community needs some standards that everyone can agree on. Enter a suitcase-sized box containing 77 objects. It contains things like hammers, a cordless drill, a can of Spam and a nine-hole peg test. As ordinary as they may seem, these carefully curated household items could be the future of a new kind of standardization for robotics. Known as the Yale-CMU-Berkeley (YCB) Object and Model Set, the intent is to provide universal benchmarks for labs specializing in robotic manipulation and prosthetics around the world.   Cont'd...

New US Robotics Roadmap calls for increased regulations, education and research

From Phys.org:  A new U.S. Robotics Roadmap released Oct. 31 calls for better policy frameworks to safely integrate new technologies, such as self-driving cars and commercial drones, into everyday life. The document also advocates for increased research efforts in the field of human-robot interaction to develop intelligent machines that will empower people to stay in their homes as they age. It calls for increased education efforts in the STEM fields from elementary school to adult learners The roadmap's authors, more than 150 researchers from around the nation, also call for research to create more flexible robotics systems to accommodate the need for increased customization in manufacturing, for everything from cars to consumer electronics The goal of the U.S. Robotics Roadmap is to determine how researchers can make a difference and solve societal problems in the United States. The document provides an overview of robotics in a wide range of areas, from manufacturing to consumer services, healthcare, autonomous vehicles and defense. The roadmap's authors make recommendation to ensure that the United States will continue to lead in the field of robotics, both in terms of research innovation, technology and policies.   Cont'd...

Swarm of Origami Robots Can Self Assemble Out of a Single Sheet

Evan Ackerman for IEEE Spectrum:  One of the biggest challenges with swarms of robots is manufacturing and deploying the swarm itself. Even if the robots are relatively small and relatively simple, you’re still dealing with a whole bunch of them, and every step in building the robots or letting them loose is multiplied over the entire number of bots in the swarm. If you’ve got more than a few robots to handle, it starts to get all kinds of tedious. The dream for swarm robotics is to be able to do away with all of that, and just push a button and have your swarm somehow magically appear. We’re not there yet, but we’re getting close: At IROS this month, researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard presented a paper demonstrating an autonomous collective robotic swarm that can be manufactured in a single flat composite sheet. On command, they’ll rip themselves apart from each other, fold themselves up into origami structures, and head off on a mission en masse.   Cont'd...

This Robot Can Do More Push-Ups Because It Sweats

Evan Ackerman for IEEE Spectrum:  When we use our muscles, they produce heat as a byproduct. When we use them a lot, we need to actively cool them, which is why we sweat. By sweating, we pump water out of our bodies, and as that water evaporates, it cools us down. Robots, especially dynamic robots like humanoids that place near-constant high torque demands on their motors, generate enough heat that it regularly becomes a major constraint on their performance. One of the reasons that SCHAFT did so well at the DRC Trials, for example, was their fancy liquid-cooled motors that could put out lots of torque over an extended period of time without overheating. Engineers solve this heat-generating problem in most mechanical systems by using fans, heat sinks, and radiators, which means that you’ve got all of this dedicated cooling infrastructure that takes up space and adds mass. At the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) this week, Japanese researchers presented a novel idea of how to cool humanoid robots in a much more efficient way: Design them to be able to sweat water straight out of their bones.   Cont'd...

Records 61 to 75 of 129

First | Previous | Next | Last

Featured Product

Harmonic Drive - Simplify with our New, Innovative Family of Compact Rotary Actuators with Integrated Servo Drive!

Harmonic Drive - Simplify with our New, Innovative Family of Compact Rotary Actuators with Integrated Servo Drive!

The SHA-IDT Series is a family of compact actuators that deliver high torque with exceptional accuracy and repeatability. These hollow shaft servo actuators feature Harmonic Drive® precision strain wave gears combined with a brushless servomotor, a brake, two magnetic absolute encoders and an integrated servo drive with CANopen® communication. This revolutionary product eliminates the need for an external drive and greatly simplifies wiring yet delivers high-positional accuracy and torsional stiffness in a compact housing.