Getting Started with Collaborative Robots - Part 5 - Get Management On Board with Robots

Even if you are part of management yourself, you will need to justify the integration of the robot with solid arguments. We suggest the "Scotty maneuver": under-promise, over-deliver!

Humanoid robots in tomorrow's aircraft manufacturing

From Phys.Org:  Developing humanoid robotic technology to perform difficult tasks in aircraft manufacturing facilities is the goal of a four-year joint research project, which is being conducted by the Joint Robotics Laboratory (CNRS/AIST) and Airbus Group. It will officially be launched on 12 February 2016 at the French Embassy in Tokyo. The introduction of humanoids on aircraft assembly lines will make it possible to relieve human operators of the most laborious and dangerous tasks, thus allowing them to concentrate on higher value-added ones. The primary difficulty for these robots will be to work in a confined environment and move without colliding with the numerous surrounding objects. This is the first issue researchers will have to solve by developing new algorithms for the planning and control of precise movements.   Cont'd...  

Earthbound Robots Today Need to Take Flight

Neil Tardella for IEEE Spectrum:  The DARPA Robotics Challenge this past summer showcased how far humanoid robots have come—but also how far they have yet to go before they can tackle real-world practical applications. Even the best of the DRC behemoths stumbled and fell down, proving, as IEEE Spectrum noted at the time, that “not walking is a big advantage.” There is, in fact, a new not-walking way for robots to perform many kinds of tasks better and faster: the dexterous drone. A lightweight flying platform with a robotic arm combines the strengths of two rapidly developing, parallel industries. Aerial drones like quadcopters and octocopters have in just the past few years emerged as a viable industrial and consumer product with substantial maneuverability, versatility, and durability. Yet the drones of today are mostly just flying bodies with no arms or hands.   Cont'd...

Smart Factories Need Smart Machines

Industry 4.0 Smart Factories and Smart Machines continue to drive dramatic efficiency improvements across the supply chain, within the factory and inside machines.

"It's quite large:" Exact Automation showcases world's largest robot

JULIE COLLINS for Fox 6 Now:  The world's largest robot is here in Milwaukee. But folks looking to get a glimpse of the giant piece of technology better act fast.With precision and ease, this robot can pick up an 800-pound motorcycle! "Well you can't help but be astounded by it, quite frankly. It's quite large," said James Schneberger with New Berlin Plastics, Inc. And it's right here in Milwaukee at Exact Automation. The company purchased the machine from FANUC -- a Japanese company. It arrived in November, but Exact Automation had work to do before it got here. "We had to pour new concrete in the building. We had to put 100,000 pound of concrete to prepare as a base for this robot because it weighs so much," said Exact Automation Owner Jim Mevis. Schneberger works around robots -- but nothing this large. Weighing in at 26,000 pounds, Schneberger is astonished at its size.   Cont'd...

Five Business Tips for Robot Integrators

Manufacturing partners need you just as much as you need them. Stay loyal because they can really help you in the early days.

Distributed Control Systems Simplify the Three C's of Robotics

Borrowed from the military, Communications, Command and Control (sometimes called 3C), are the three key organizing principles for acquiring, processing and disseminating information

Robotics in the Folding Carton Industry: The Human Factor

As they watch fellow companies successfully use robotics, see what it takes to switch to a fully or semi-automated system and be reassured by a human back-up system, it seems inevitable that more folding carton manufacturers will soon be adopting robotics.

Is Velo3D Plotting a 3-D Printed Robot Revolution?

Tekla S. Perry for IEEE Spectrum:  Velo3D, based in Santa Clara, Calif., has $22.1 million in venture investment to do something in 3-D printing: That makes it fourth among 2015’s best-funded stealth-mode tech companies in the United States, according to CB Insights. This dollar number is about all the hard news that has come out of this startup, founded in 2014 by Benyamin Butler and Erel Milshtein. But job postings, talks at conferences, and other breadcrumbs left along Velo3D's development trail—has created a sketchy outline of this company’s plans. Consider which 3-D printing technology is ready for disruption: metal. 3-D printing of plastics took off after 2009, when a key patent that covered the deposition technology expired; we now have desktop printers for 3-D plastic objects as cheap as $350. Printing of metal objects—done regularly in industry, particularly aerospace—uses a different, and, to date, far more expensive technology: selective laser sintering. This technology melts metal powders into solid shapes; it requires high temperatures, and far more complicated equipment than what’s found in the layering sort of printers used for plastic. The patent for this technology expired in early 2014—just before the formation of Velo3D. At the time, industry experts indicated that there wouldn’t be cheap metal printers coming anytime soon, but rather, would only come after “a significant breakthrough on the materials side,” OpenSLS’s Andreas Bastian told GigaOm in 2014. Could Velo3D’s founders have that breakthrough figured out?   Cont'd...

A problem-solving approach IT workers should learn from robotics engineers

Greg Nichols  for ZDNet:  Google-owned Boston Dynamics got some bad news in the final days of 2015.  After years of development and intensive field trials, the Massachusetts-based robotics company learned that the U.S. Marines had decided to reject its four-legged robotic mule, Big Dog. The reason? The thing is too damn noisy for combat, where close quarters and the occasional need for stealth make excess machine noise a liability. The setback reminded me of a story another group of robotics engineers told me about the development of their breakthrough machine, a robotic exoskeleton that enables paraplegics to walk and soldiers to hump heavy packs without wearing down. It also reminded me of a powerful approach to solving problems and dealing with setbacks that I've encountered again and again reporting on robotics. Ekso Bionics, which went public in 2015, invented the first viable untethered exoskeleton, one that doesn't need to be plugged into an external power source. Their achievement rests on one engineering breakthrough in particular, and to arrive at it Ekso's engineers had to do something that's surprisingly difficult but incredibly instructive for non-engineers--they had to change the way they thought about their problem.   Cont'd...  

New Product - P-Rob 2 Second Generation of the Collaborative Robot

P-Rob 2 is an all-in-one robotic solution combining robot arm, sensor technologies and software including an embedded PC as control unit. So all that needs to be done is plug-in and run.

Factory Automation Will Speed Forward with A.I., Says Bernstein

By Tiernan Ray for Barron's:  Bernstein Research’s Alberto Moel, who follows tech-industrial companies such as Corning(GLW) and AU Optronics (AUO), this afternoon offered up a thinks piece on robotics andfactory automation, arguing that some of the costs of automation beyond the basic cost of the robot are about to get dramatically cheaper, thanks in large part to artificial intelligence akin to what Alphabet (GOOGL) and others are doing. Moel notes that the basic components of factory robots are only falling by perhaps 6% per year, their cost reduction bounded by things such as casings and servomotors and reduction gears that don’t rapidly fall in cost. But, writes Moel, the cost to install and adjust these machines on a factory floor is ten times their component cost and that stuff can be reduced more dramatically: How much this integration costs varies widely. An often-cited rule of thumb is that a $50,000 robot will need $500,000 of integration costs before it is all said and done. Of course, these integration costs can be amortized over many robots, so perhaps a better estimate would be 3-5x the robot cost [...] But I do believe we are at an inflection pointthat will materially increase the capability of automation systems and substantially reduce programming, setup, and fixturing costs which are the largest cost element in most automation efforts. So instead of a measly 6% YoY cost reduction , we get 25-30% YoY declines, and automation Nirvana.   Cont'd.. .

Most Popular Articles for 2015 - Did some of them predict the future?

Smart Homes, Robotics, Automation, Unmanned Vehicles, Solar and Wind Energy. Regardless of where you work or what you do, these topics are affecting your life and will continue to do so in the future.

Robotics, reshoring, and American jobs

By Charles Orlowek for The Hill:  Good news?   Boston Consulting Group foresees more large manufacturers boosting production for the American market by adding capacity in the U.S. itself, compared with any other country.  It cites “decreasing costs and improved capabilities of advanced manufacturing technologies such as robotics."  Under this optimistic scenario, how much value would American workers add?  When robotics and other automation gets built for, and installed in American workplaces, where are jobs created?    Increasingly, these jobs are being created and sustained outside the United States, even for domestic factories.    The first industrial robots were developed and manufactured by Americans, and General Motors became the first user, in 1961.  Over recent decades, however, the domestic robot industry has declined.   A Commerce Department national security assessment from 1991 asserted that American robot manufacturers lost market share throughout the 1980s, with shipments of U.S.-manufactured robots falling by 33 percent between 1984 and 1989, despite robust domestic demand and a weak dollar.   Cont'd...

Robotics at the Distributed Intelligent Systems Lab at GE Global Research

At GEs Global Research Center, were also looking at the next generation of robotics - drones for aerial-based surveillance and inspection, small scale crawlers for in-situ inspection, and mobile collaborative robotics for things like machine tending in our factories.

Records 1306 to 1320 of 2111

First | Previous | Next | Last

Industrial Robotics - Featured Product

 igus® - Free heavy-duty plastic bearings sample box

igus® - Free heavy-duty plastic bearings sample box

The iglide® heavy-duty sample box provides a selection of five unique iglide bearings, each suitable for use in heavy-duty equipment due to their self-lubricating, dirt-resistant properties. Each bearing material boasts unique benefits and is best suited for different application conditions, though each can withstand surface pressures of at least 11,603 psi at 68°F.