Kickstarted at $3M, How Tiko is Set to Be the Best and Cheapest 3D Printer

Sage Lazzaro for The Observer:  When we last talked with the folks from Makerbot, we discussed how 3D printers will soon be household appliances as common as microwaves, vacuums and well, regular printers. But they agreed that certain design and affordability standards need to be met first. Little did we know, a 3D printer set to meet those standards was being developed in Toronto as we spoke.   We’re talking about Tiko, the meticulously designed and shockingly affordable “unibody” 3D printer that’s had the industry’s experts and publications buzzing. The $179 3D printer surpassed its Kickstarter goal of $100,000 in three hours and finished up its campaign last Friday with a total of just under $3 million in pledges.   Tiko looks nothing like any 3D printer you’ve seen before. While most have a multipart frame, Tiko’s frame is one piece with three sets of arms that move in unison, essentially eliminating issues of misalignment or inaccurate prints associated with other products. The New York Observer spoke with Tiko founder and CEO Matt Gajkowski, who explained that Tiko’s unique design is actually essential to its affordability.   Cont'd...

Robotics Emerge to Power Next-Generation Industrial Environments

Dan Dibbern and Laura Studwell for Quality Magazine:  Industrial robots are expected to be the focus for investment in factory automation. According to the International Federation of Robotics (IFR), investment in industrial robots is expected to grow at an annual rate of 12% from 2015 to 2017. The packaging industry is experiencing a surge in robotic integration throughout primary, secondary and tertiary packaging—from processing, assembly, labeling and cartoning to case packing and palletizing. The driving force behind the surge in robotics sales growth in North America is the Food Safety Modernization Act (FSMA). The FSMA is requiring companies to introduce automated machinery and components into the production process to help eliminate potential product quality and integrity issues. With the FSMA about to publicly release its requirements, the use of robots in packaging is at the point of takeoff. And with recent technical advances in robotics helping to power the new wave of interest, companies are experiencing first-hand that robots are faster, smarter and more affordable than ever before.

Frankenimage

From David Stolarsky: The goal of Frankenimage is to reconstruct input (target) images with pieces of images from a large image database (the database images). Frankenimage is deliberately in contrast with traditional photomosaics. In traditional photomosaics, more often than not, the database images that are composed together to make up the target image are so small as to be little more than glorified pixels. Frankenimage aims instead for component database images to be as large as possible in the final composition, taking advantage of structure in each database image, instead of just its average color. In this way, database images retain their own meaning, allowing for real artistic juxtaposition to be achieved between target and component images... ( full description and pseudo code )

Monoprice's $699.99 Dual Extrusion Printer

From Monoprice: $699. Quickly sold out though. New stock ETA 5/25/2015 ( monoprice order page )

Artoo: Ruby on Robots

From Artoo, a ruby framework, that supports 15 platforms including ARrone, Crazyflie, Sphero, and Arduino: Modular Example require 'artoo/robot' SPHEROS = ["4567", "4568", "4569", "4570", "4571"] class SpheroRobot < Artoo::Robot   connection :sphero, :adaptor => :sphero   device :sphero, :driver => :sphero   work do     every(3.seconds) do       sphero.roll 90, rand(360)     end   end end robots = [] SPHEROS.each {|p|   robots << SpheroRobot.new(:connections =>                                {:sphero =>                                  {:port => p}}) } SpheroRobot.work!(robots) more information ( here ) and at ( github )

ROBOCHOP: Interactive Installation Allows Internet Users Worldwide to Remotely Control a Pop-up Robotic Plant

From Clemens Weisshaar and Reed Kram: From March 16-20, 2015 internet users and visitors to CODE_n (Hall 16) at CeBit in Hanover will be able to use an online app connected to the ROBOCHOP installation to design and fabricate a piece of furniture in real time. The ROBOCHOP interface lets participants instruct a robotic arm to grab and sculpt a prefabricated 40 x 40 x 40cm durable foam cube using a floor mounted hot wire tool to create the object of their choice. The pop-up robotic plant has been conceptualised, coded and built by KRAM/WEISSHAAR. ROBOCHOP features a needle gripper as the robot’s hand, coaxial cooling of the cutting wire and sensors to measure the wire’s tension and provide direct feedback to the system. This harnesses the robot’s brute force and allows it to sculpt hundreds of unique objects consecutively with elegance and precision. Once manufacturing is complete, each custom object is packaged and posted to the user anywhere in the world entirely free of charge... ( full release ) ( homepage )  

Minibuilders

From iaac: Minibuilders was conceptualized as a community of three modestly sized robots which were tasked with very specific jobs that aggregated to a large scale operation. Each robot completes its programmed job in sequence to fully construct an automated, inhabitable structure... (full article)

Voxel8: 3D Electronics Printing

Voxel8 announces its dual-head printer that prints thermoplastics and highly conductive silver inks together.

Project Beyond: 360° 3D Camera

From Project Beyond/Samsung: Today we offer a sneak preview of Project Beyond,the world’s first true 3D 360Ëš omniview camera. Beyond captures and streams immersive videos in stunning high-resolution 3D, and allows every user to enjoy their viewing experience in the way they see fit. It offers full 3D reconstruction in all directions, using stereo camera pairs combined with a top-view camera to capture independent left and right eye stereo pairs. Project Beyond uses patent-pending stereoscopic interleaved capture and 3D-aware stitching technology to capture the scene just like the human eye, but in a form factor that is extremely compact. The innovative reconstruction system recreates the view geometry in the same way that the human eyes see, producing unparalleled 3D perception. Project Beyond is not a product, but one of the many exciting projects currently being developed by the Think Tank Team, an advanced research team within Samsung Research America. This is the first operational version of the device, and just a taste of what the final system we are working on will be capable of. Once complete, we hope to deploy Project Beyond around the world to beautiful and noteworthy locations and events, and allow users to experience those locations as if they were really there. The camera system can stream real time events, as well as store the data for future viewing... ( website )

3D Reconstruction Firm Paracosm Has Closed $3.3 Million In Seed Funding

From Paracosm: Paracosm, a cloud-based software company, raised 3.3 million in seed round funding to further its mission to 3D-ify the world. The round, led by Atlas Venture, includes contributions from iRobot, Osage University Partners, BOLDstart Ventures, New World Angels, Deep Fork Capital and a number of angel investors.  Paracosm's advanced three-dimensional reconstruction technologies create digital models of physical spaces. When shared with machines, these models serve as blueprints which provide robots and applications a greater sense of awareness and understanding of the physical world. Such technologies are valuable for robotics, video game development, special effects, indoor navigation applications, and for the improvement of both virtual and augmented reality experiences... ( full press release )

Soft Robotics Toolkit

From Harvard Biodesign Lab: The Soft Robotics Toolkit is a collection of shared resources to support the design, fabrication, modeling, characterization, and control of soft robotic devices. The toolkit was developed as part of educational research being undertaken in the Harvard Biodesign Lab. The ultimate aim of the toolkit is to advance the field of soft robotics by allowing designers and researchers to build upon each other’s work. The toolkit includes an open source fluidic control board, detailed design documentation describing a wide range of soft robotic components (including actuators and sensors), and related files that can be downloaded and used in the design, manufacture, and operation of soft robots. In combination with low material costs and increasingly accessible rapid prototyping technologies such as 3D printers, laser cutters, and CNC mills, the toolkit enables soft robotic components to be produced easily and affordably... ( project's homepage )

ArduIMU V4: An Arduino Based Integrated Measurement Unit

Kickstarter for version 4 of ArduIMU: Initially, the ArduIMU project was started as an open source project by 3DRobotics in 2007 to create an inertial measurement unit based on the Arduino™. We contributed to the software development of that project, but, the initial ArduIMU was meant to be used solely as an inertial measurement unit. We want to do better than that; so we developed a brand new platform with other sensors such as a barometer, relative humidity sensor, and light sensor. We also included wireless communication capabilities as well an SD card for data logging and storage. Since then, we have gone through many revisions, adding even more sensors and functions which are present in the latest ArduIMU V4. With this new augmented and improved sensor board we are redefining the term IMU. We proudly present our Arduino™ based Integrated Measurement Unit: the ArduIMU V4... ( cont'd )

High Speed Bipedal Robot Running Using High Speed Visual Feedback

From University of Tokyo: ACHIRES is composed of high-speed vision and high-speed actuators to achieve instantaneous recognition and behavior. The similar technologies are used in our Janken (Rock Paper Scissors) Robot. High-speed vision detects the state of the biped robot including the timing of landing at 600 fps. The biped mechanism with the leg length of 14 cm is set to run in the sagittal plane. At present, the running velocity reaches 4.2 km/h. Simple control based on high-speed performance of sensory-motor system enables the biped robot to stably run without falling, unlike computationally expensive ZMP-based control which is commonly used for balance. The aerial posture is recovered to compensate for the deviation from the stable trajectory using high-speed visual feedback. We also address a task of somersaulting. While running, the robot takes a big swing with one foot and jumps. After takeoff, both legs are controlled to curl up for high-speed rotation in the air. ACHIRES is going to be improved to push the envelope while demonstrating various biped locomotion tasks... ( cont'd )

Self-Folding Origami Robot Goes From Flat to Walking in Four Minutes

From IEEE Spectrum: Printable, self-folding robot created by Harvard and MIT researchers... ( IEEE Spectrum story ) ( full paper )

Hitchbot is Halfway Across its Canadian Journey

From hitchBOT's page: I am hitchBOT — a robot from Port Credit, Ontario. I am traveling from Halifax, Nova Scotia to Victoria, British Columbia this summer. As you may have guessed, robots cannot get driver’s licences yet, so I’ll be hitchhiking my entire way... ( cont'd )

Records 676 to 690 of 702

First | Previous | Next | Last

Mobile Robots - Featured Product

ResinDek® TRIGARD® ESD ULTRA FOR HIGH-TRAFFIC ROBOTIC APPLICATIONS

ResinDek® TRIGARD® ESD ULTRA FOR HIGH-TRAFFIC ROBOTIC APPLICATIONS

To maximize the productivity of an autonomous mobile robot (AMR) or automatic guided vehicle (AGV) deployment, it's critical to create the optimal environment that allows the vehicles to perform at their peak. For that reason, Cornerstone Specialty Wood Products, LLC® (www.resindek.com) created the TriGard® ESD Ultra finish for its ResinDek® engineered flooring panels. The TriGard ESD Ultra finish is ideal for high-traffic robotic applications characterized by highly repetitive movement patterns and defined travel paths.