Robonaut 2 Gets Legs

NASA : NASA engineers are developing climbing legs for the International Space Station's robotic crew member Robonaut 2 (R2), marking another milestone in space humanoid robotics. The legless R2, currently attached to a support post, is undergoing experimental trials with astronauts aboard the orbiting laboratory. Since its arrival at the station in February 2011, R2 has performed a series of tasks to demonstrate its functionality in microgravity. These new legs, funded by NASA's Human Exploration and Operations and Space Technology mission directorates, will provide R2 the mobility it needs to help with regular and repetitive tasks inside and outside the space station. The goal is to free up the crew for more critical work, including scientific research.  

How Small Can You Go?

Nanorobotics is about creating robots which are so small they are nearly invisible to the naked eye. Operating as a swarm, these tiny robots have the promise to do some really incredible things.

Robotic Welding Series: Perfectly weld imperfect parts with adaptive welding

This is the second of a 4-part series by KC Robotics about the automated arc welding industry.

Parrot Announces MiniDrone And Jumping Sumo At CES

From  Parrot :

Rex: A Single-board Computer With A Full OS That Is Designed For Robots

From the Rex Kickstarter : Why do you want Rex? There are two general classes of electronics used in robot hardware: microcontrollers (ex. Arduino) and single-board computers. Microcontrollers are great for projects that only require a single program to be run, quickly and without overhead, like controlling LEDs and motors. Single-board computers are great for anything you'd need a cheap, small computer for - like networking applications and image processing. Advanced autonomous robots require the strengths of both. A system developed around Rex, being made specifically for robots, brings it all together in one nice little package in a way that has never been done before. Hardware Specs: Texas Instruments DM3730 1GHz 32-bit ARM Cortex-A8 Processor core 800MHz DSP core 512MB LPDDR RAM USB Host port MicroSD slot Camera Module port 3.5mm Audio-in jack 3.5mm Audio-out jack 5V DC input for desktop development Each Rex will come pre-installed with Alphalem OS, a FOSS custom linux distribution. It includes a core set of built-in device drivers - ones that we've hand-picked as being the most useful for robots (like USB WiFi adapters and cameras). We'll publish the list in a wiki on our website. Here are the other main features: An Arduino-style programming environment with support for multiple programming languages (C, C++, Python). A special task manager called the Master Control Program (MCP). An API for message passing in multi-process applications. A standard Linux filesystem which will allow you to install just about any Linux software that can be cross-compiled for ARM. Libraries for common processes such as I2C communication, face detection, and sensor reading.

DARPA Trials 2013

The two day DARPA Robotics Challenge Trials 2013 officially ended Saturday, December 21 and here are the results.

Integrated Force Control

A force‐controlled robot can be programmed to mimic the movements of a human arm, applying search patterns to find the correct position to assemble a given part.

DARPA Robotics Challenge Trials Live Broadcast

The DRC Trials are happening today and tomorrow (December 20-21, 2013) at the Homestead-Miami Speedway. Teams will attempt to guide their robots through eight individual, physical tasks that test mobility, manipulation, dexterity, perception, and operator control mechanisms; You can watch the live stream here.

The Factory-in-a-Day Project

From  Factory-in-a-Day's page : Small and medium-sized enterprises in Europe mostly refrain from using advanced robot technology. The EU-project Factory-in-a-Day aims to change this by developing a robotic system that can be set up and made operational in 24 hours and is flexible, leasable and cheap. The project has a budget of 11 million euros for four years, 7.9 million of which will be funded by the European Union as part of the FP7 programme ‘Factory of the Future’. The international consortium comprises 16 partners and the coordinating university is Delft University of Technology (TU Delft). The project will start on 8 October 2013 with a formal kick- off meeting in Delft. Within 24 hours The Factory-in-a-Day-project will provide a solution to these problems: a robot that can be set up and operational in 24 hours. SME companies can use the robot for a specific job and their staff can learn how to work closely together with the robot and thus optimize their production. “With the technological and organizational innovations of the Factory-in-a-Day project, we hope to fundamentally change the ways in which robots are used in the manufacturing world”, says project coordinator Martijn Wisse, Associate Professor at TU Delft. How does it work? What will such an installation day look like? First of all, before the robot is actually taken to the SME premises, a system integrator analyzes which steps in the process can be taken over by the robot. In most cases the repetitive work is done by the robot while the human worker carries out the more flexible, accurate tasks and deals with problem- solving. Customer-specific hardware-components are 3D-printed and installed on the grippers of the robot. The robot is then brought to the factory and set up, and any auxiliary components such as cameras are also set up in the unaltered production facilities. The robot will be connected to the machinery software through a brand-independent software system. After that, the robot is taught how to perform his set of tasks, for example how to grasp an object. Therefore, the operator will physically interact with the robot. A set of predefined skills will be available, rather like Apps for smart phones. Finally, the robot is operational and the human co-workers receive their training -- all in just 24 hours.

Robo-Stox: Investing in the Robotics Revolution

"I've worked a long time to make this happen and am very pleased with the results. It enables investors everywhere to capitalize on the accelerating growth and promising future of robotics." Frank Tobe, Co-founder, Robo-stox LLC and Editor/Publisher, The Robot Report.

Using Drones To Prevent Animal Poaching

These drones are solely surveyors. They must be well equipped to notice when something is out of place or detect potential threats and weapons and alert park rangers immediately.

Robotic Welding Series: Alleviate Skilled Welder Shortages With Robotic Welding Cells

A robot system, fully deployed is going to give two to three-hundred percent return on investment per year.

Google Puts Money on Robots, Using the Man Behind Android

New York Times: Over the last half-year, Google has quietly acquired seven technology companies in an effort to create a new generation of robots. And the engineer heading the effort is Andy Rubin, the man who built Google’s Android software into the world’s dominant force in smartphones.... ( full article )

Using Robots to Clean Oil Spills

As this technology is still in its infant stages, we do not truly know how efficient the process will be. We can only hope that the technology will be there when the next spill happens.

ABB Robotics' Introduces 7th Generation IRB 6700 Family Of Large Robots

ABB Robotics has introduced the IRB 6700 robot family, its seventh generation of industry-leading, large industrial robots.

Records 2881 to 2895 of 3324

First | Previous | Next | Last

Featured Product

MVTec MERLIC 5.4 now available

MVTec MERLIC 5.4 now available

MVTec has launched the newest version 5.4 of its easy-to-use machine vision software MERLIC on Oct. 25. Its focus is on easier process integration. MVTec MERLIC 5.4 includes state-of-the-art machine vision technologies, plug-ins for direct communication with different PLCs and can be used to create complete machine vision applications. Try the new MERLIC 5.4 now!