MegaBots: Live-Action Giant Robot Combat

From MegaBots Kickstarter: The mad scientists at MegaBots, Inc. have been zealously working on the prototypes and final design of 15-foot-tall, 15,000-pound, walking humanoid combat robots with giant, modular pneumatic cannons for arms. A driver-and-gunner team pilot each MegaBot in a battle against other MegaBots, vehicles, and a variety of other defenses and obstacles in live-action combat – the likes of which the world has only dreamed of through video games and movies... ...At our minimum funding level ($1.8M), we can build two robots. They’ll duke it out in an epic 1-on-1 deathmatch tournament. At higher funding levels, we can build more MegaBots and unlock the gameplay options you know and love: team deathmatches, free-for-alls, king of the hill, capture the flag, home base capture, escort missions, and more!  ( Kickstarter )

Meet Lowe's New Robot Retail Workers

From Business Insider: Lowe's is introducing a fleet of multilingual robots at one of its Orchard Supply Hardware stores to help out with customer service, the Wall Street Journal reports.  The 5-foot-tall robots, called OSHbots, will greet customers at the door and ask them what they need, according to a video posted by Lowe's Orchard Supply Hardware Co. store in San Jose, California, where the first robots will be located... ( full stories )

Grabit Inc. Demos Electrostatic Gripper

From Grabit Inc.: Enhanced Flexibility Grabit technology eliminates the need for part-specific grippers and minimizes gripper changeover, dramatically reducing costs and downtime. Gentle Handling Grabit grippers offer scratch and smudge-free handling with its clean grasping and eliminates the need to remove residue left by vacuum cups. Grabit’s uniform grasping effect eliminates high “point stresses” on large format glass sheets. Low Energy & Quiet Operations Grabit products operate at ultra-low energy levels providing cost savings and enabling mobile robot applications, and also offer quiet operations improving factory conditions and supporting the adoption of collaborative robots... ( homepage )

Watch That Windows Update: FTDI Drivers Are Killing Fake Chips

From Brian Benchoff at Hack A Day: The FTDI FT232 chip is found in thousands of electronic baubles, from Arduinos to test equipment, and more than a few bits of consumer electronics. It’s a simple chip, converting USB to a serial port, but very useful and probably one of the most cloned pieces of silicon on Earth. Thanks to a recent Windows update,  all those fake FTDI chips are at risk of being bricked.  This isn’t a case where fake FTDI chips won’t work if plugged into a machine running the newest FTDI driver; the latest driver bricks the fake chips, rendering them inoperable with any computer. Reports of problems with FTDI chips  surfaced early this month , with an explanation of the behavior showing up in  an EEVblog forum thread . The new driver for these chips from FTDI, delivered through a recent Windows update, reprograms the USB PID to 0, something Windows, Linux, and OS X don’t like. This renders the chip inaccessible from any OS, effectively bricking any device that happens to have one of these fake FTDI serial chips... ( full story with workaround solution )

At Japan Robot Week, Mechanical Barista Treats Visitors to Coffee

From  Japan Times :

iRobot Unveils Its First Multi-Robot Tablet Controller for First Responders, Defense Forces and Industrial Customers

From iRobot: The uPoint MRC system runs an Android-based app that standardizes the control of any robot within the iRobot family of unmanned vehicles. Utilizing the same intuitive touchscreen technology in use today on millions of digital devices, the uPoint MRC system simplifies robot operations including driving, manipulation and inspection, allowing operators to focus more on the mission at hand... ( full press release )

NASA's Free Flying Robot Challenge

From NASA, Google's Project Tango, and Top Coders: Welcome to the NASA Free Flying Robot Mission Patch & Naming Challenge sponsored by the NASA Tournament Lab!  In 2017, NASA is aiming to launch a robot that will be used on-board the International Space Station (ISS). The robot has been tentatively called the “Free Flying Robot”. Not that catchy, right?  So here’s where NASA needs your help – we need the Topcoder community to help design a custom mission patch AND develop a name for the Free Flying Robot.  So what is a Free Flying Robot? It’s a robot that is capable of functioning autonomously, but can also be controlled by a flight crew on-board the ISS or from Earth. It can conduct zero gravity robotics experiments, carry mobile sensors such as an RFID reader for logging inventory & inspect items using a built in camera  Currently on the ISS there are robotic devices called  “ SPHERES ”  (Synchronized Position Hold, Engage, Reorient, Experimental Satellites), and the new Free Flyer Robot program is being seen as a step forward in the use of robotic devices in spaceflight... ( submission form )  

Deep Learning for Detecting Robotic Grasps

From Ian Lenz, Honglak Lee, Ashutosh Saxena: Abstract We consider the problem of detecting robotic grasps in an RGB-D view of a scene containing objects. In this work, we apply a deep learning approach to solve this problem, which avoids time-consuming hand-design of features. This presents two main challenges. First, we need to evaluate a huge number of candidate grasps. In order to make detection fast and robust, we present a two-step cascaded system with two deep networks, where the top detections from the first are re-evaluated by the second. The first network has fewer features, is faster to run, and can effectively prune out unlikely candidate grasps. The second, with more features, is slower but has to run only on the top few detections. Second, we need to handle multimodal inputs effectively, for which we present a method that applies structured regularization on the weights based on multimodal group regularization. We show that our method improves performance on an RGBD robotic grasping dataset, and can be used to successfully execute grasps on two different robotic platforms... ( homepage ) ( full pdf paper )

FPV Forest Quad Racing

From french quad racing association  Airgonay :    

Soft Robotics Toolkit

From Harvard Biodesign Lab: The Soft Robotics Toolkit is a collection of shared resources to support the design, fabrication, modeling, characterization, and control of soft robotic devices. The toolkit was developed as part of educational research being undertaken in the Harvard Biodesign Lab. The ultimate aim of the toolkit is to advance the field of soft robotics by allowing designers and researchers to build upon each other’s work. The toolkit includes an open source fluidic control board, detailed design documentation describing a wide range of soft robotic components (including actuators and sensors), and related files that can be downloaded and used in the design, manufacture, and operation of soft robots. In combination with low material costs and increasingly accessible rapid prototyping technologies such as 3D printers, laser cutters, and CNC mills, the toolkit enables soft robotic components to be produced easily and affordably... ( project's homepage )

Robot Octopus Takes to the Sea

From Evan Ackerman at IEEE Spectrum: The video below has four parts to it: the first shows the difference between the robotic octopus swimming with just flexible arms, and swimming with just flexible arms in addition to a web. The most obvious difference is the speed: just over 100 millimeters per second with arms only, and up to 180 mm/s (or 0.5 body lengths per second) with the web. This is a significant increase, obviously, but what's more important is the overall cost of transport (CoT), which is a measure of the efficiency of the robot (specifically, the ratio of the energy put in over the resulting speed). The CoT for the arms-only version is 0.85, whereas the web drops that down to 0.62. So yeah, having that web in there is better in almost every way... ( cont'd )

Nixie: The First Wearable Camera That Can Fly

From Nixie's homepage: Nixie is a tiny wearable camera on a wrist band. The wrist straps unfold to create a quadcopter that flies, takes photos or video, then comes back to you... ( cont'd )

How To Tell When A Robot Has Written You A Letter

From Clive Thompson: A few weeks ago I got duped by a robot. In the mail. I was sifting through my dead-tree postal mail and tossing junk in the recycling bin. Nearly everything that arrives in my mailbox is junk, so I was tossing, tossing, tossing … until suddenly, whoops: A hand-addressed letter. This looked legit, so I ripped it open — only to find it was an oily invitation to take out a second mortgage on my home. I’d been fooled... ( cont'd )

Tiny Humanoid Robot Learning to Fly Real Airplanes

From IEEE Spectrum: The airplane is initially parked on a runway of an airport. The robot prepares the flight by 1) pulling throttle to zero-point, 2) turning on the battery, 3) the altimeter, 4) the avionics, 5) the fuel pump, and 6) start the engine while pressing the switches on the panel. Then, PIBOT grabs the two control sticks for flight control and brakes are released. When the heading of the airplane aligns with the runway within an error less than 5 degree and its speed exceeds the taxiing speed, the second sequence begins and PIBOT increase the power... ( cont'd )

Pawly: Play With Your Pet Anywhere Anytime

Indigogo campaign for Pawly: Take your playtime to the next level with Pawly's accessory. Pawly can be equipped to play and reward your pets in real time, mimicking the way pet-owners would play with their pets. Treat Blaster Reward your pet when they do back flips when you're away. Toss them a treat with Pawly's Treat Blaster. This safe but exciting accessory will shoot out a treat at the press of a button. The LEDs found on the dome light up, followed by a sound before shooting out their favourite treats. To use the Treat Blaster, mount it on top of Pawly by lining up the teeth of the accessory to the three holes on top of Pawly. Turn on Pawly's app and start blasting away.. ( cont'd )

Records 496 to 510 of 817

First | Previous | Next | Last

Featured Product

maxon motor’s - Compact power for your motion control application.

maxon motor's - Compact power for your motion control application.

maxon launches the next generation of positioning controllers - the EPOS4. A high performance module with detachable pin headers and two different power ratings. With a connector board, the modules can be combined into a ready-to-install compact solution. Suitable for efficient and dynamic control of brushed and brushless DC motors with Hall sensors and encoders up to 750 W continuous power and 1500 W peak power. The modular concept also provides for a wide variety of expansion options with Ethernet-based interfaces, such as EtherCAT or absolute rotary encoders.