Mercedes Boots Robots From the Production Line:

By Elisabeth Behrmann & Christoph Rauwald for Bloomberg Business:  “Robots can’t deal with the degree of individualization and the many variants that we have today,” Markus Schaefer, the German automaker’s head of production, said at its factory in Sindelfingen, the anchor of the Daimler AG unit’s global manufacturing network. “We’re saving money and safeguarding our future by employing more people.” Mercedes’s Sindelfingen plant, the manufacturer’s biggest, is an unlikely place to question the benefits of automation. While the factory makes elite models such as the GT sports car and the ultra-luxury S-Class Maybach sedan, the 101-year-old site is far from a boutique assembly shop. The complex processes 1,500 tons of steel a day and churns out more than 400,000 vehicles a year. That makes efficient, streamlined production as important at Sindelfingen as at any other automotive plant. But the age of individualization is forcing changes to the manufacturing methods that made cars and other goods accessible to the masses. The impetus for the shift is versatility. While robots are good at reliably and repeatedly performing defined tasks, they’re not good at adapting. That’s increasingly in demand amid a broader offering of models, each with more and more features.   Cont'd...

ROS Navigation Basics

If youve worked with ROS and robotics, youve probably heard of gmaping, localization, SLAM, costmaps and paths, but what does all this mean? They are more than just robot buzz words - these allow a robot to get from one point to another without bumping into obstacles, and in this tutorial, well be covering some of the key concepts in what makes up an autonomous robot.

Republican-Leaning Cities Are At Greater Risk Of Job Automation

By Jed Kolko for Five Thirty Eight:  More and more work activities and even entire jobs are at risk of beingautomated by algorithms, computers and robots, raising concerns that more and more humans will be put out of work. The fear of automation is widespread — President Obama cited it as the No. 1 reason Americans feel anxious about the economy in his State of the Union address last month — but its effects are not equally distributed, creating challenges for workers and policymakers. An analysis of where jobs are most likely to face automation shows that areas that voted Republican in the last presidential election are more at risk, suggesting that automation could become a partisan issue. So-called “routine” jobs — those that “can be accomplished by following explicit rules” — are most at risk of automation. These include both “manual” routine occupations, such as metalworkers and truck drivers, and “cognitive” routine occupations, such as cashiers and customer service reps.1 Whereas many routine jobs tend to be middle-wage, non-routine jobs include both higher-wage managerial and professional occupations and lower-wage service jobs.   Cont'd...

Japanese Firm To Open World's First Robot-run Farm

Spread , a vegetable producer, said industrial robots would carry out all but one of the tasks needed to grow the tens of thousands of lettuces it produces each day at its vast indoor farm in Kameoka, Kyoto prefecture, starting from mid-2017. The robots will do everything from re-planting young seedlings to watering, trimming and harvesting crops. The innovation will boost production from 21,000 lettuces a day to 50,000 a day, the firm said, adding that it planned to raise that figure to half a million lettuces daily within five years. “The seeds will still be planted by humans, but every other step, from the transplanting of young seedlings to larger spaces as they grow to harvesting the lettuces, will be done automatically,” said JJ Price, Spread’s global marketing manager. The new farm – an extension of its existing Kameoka farm – will improve efficiency and reduce labour costs by about half. The use of LED lighting means energy costs will be slashed by almost a third, and about 98% of the water needed to grow the crops will be recycled. The farm, measuring about 4,400 sq metres, will have floor-to-ceiling shelves where the produce is grown... ( cont'd )

Getting Started with Collaborative Robots - Part 5 - Get Management On Board with Robots

Even if you are part of management yourself, you will need to justify the integration of the robot with solid arguments. We suggest the "Scotty maneuver": under-promise, over-deliver!

Humanoid robots in tomorrow's aircraft manufacturing

From Phys.Org:  Developing humanoid robotic technology to perform difficult tasks in aircraft manufacturing facilities is the goal of a four-year joint research project, which is being conducted by the Joint Robotics Laboratory (CNRS/AIST) and Airbus Group. It will officially be launched on 12 February 2016 at the French Embassy in Tokyo. The introduction of humanoids on aircraft assembly lines will make it possible to relieve human operators of the most laborious and dangerous tasks, thus allowing them to concentrate on higher value-added ones. The primary difficulty for these robots will be to work in a confined environment and move without colliding with the numerous surrounding objects. This is the first issue researchers will have to solve by developing new algorithms for the planning and control of precise movements.   Cont'd...  

Earthbound Robots Today Need to Take Flight

Neil Tardella for IEEE Spectrum:  The DARPA Robotics Challenge this past summer showcased how far humanoid robots have come—but also how far they have yet to go before they can tackle real-world practical applications. Even the best of the DRC behemoths stumbled and fell down, proving, as IEEE Spectrum noted at the time, that “not walking is a big advantage.” There is, in fact, a new not-walking way for robots to perform many kinds of tasks better and faster: the dexterous drone. A lightweight flying platform with a robotic arm combines the strengths of two rapidly developing, parallel industries. Aerial drones like quadcopters and octocopters have in just the past few years emerged as a viable industrial and consumer product with substantial maneuverability, versatility, and durability. Yet the drones of today are mostly just flying bodies with no arms or hands.   Cont'd...

Smart Factories Need Smart Machines

Industry 4.0 Smart Factories and Smart Machines continue to drive dramatic efficiency improvements across the supply chain, within the factory and inside machines.

"It's quite large:" Exact Automation showcases world's largest robot

JULIE COLLINS for Fox 6 Now:  The world's largest robot is here in Milwaukee. But folks looking to get a glimpse of the giant piece of technology better act fast.With precision and ease, this robot can pick up an 800-pound motorcycle! "Well you can't help but be astounded by it, quite frankly. It's quite large," said James Schneberger with New Berlin Plastics, Inc. And it's right here in Milwaukee at Exact Automation. The company purchased the machine from FANUC -- a Japanese company. It arrived in November, but Exact Automation had work to do before it got here. "We had to pour new concrete in the building. We had to put 100,000 pound of concrete to prepare as a base for this robot because it weighs so much," said Exact Automation Owner Jim Mevis. Schneberger works around robots -- but nothing this large. Weighing in at 26,000 pounds, Schneberger is astonished at its size.   Cont'd...

Five Business Tips for Robot Integrators

Manufacturing partners need you just as much as you need them. Stay loyal because they can really help you in the early days.

Distributed Control Systems Simplify the Three C's of Robotics

Borrowed from the military, Communications, Command and Control (sometimes called 3C), are the three key organizing principles for acquiring, processing and disseminating information

Robotics in the Folding Carton Industry: The Human Factor

As they watch fellow companies successfully use robotics, see what it takes to switch to a fully or semi-automated system and be reassured by a human back-up system, it seems inevitable that more folding carton manufacturers will soon be adopting robotics.

Is Velo3D Plotting a 3-D Printed Robot Revolution?

Tekla S. Perry for IEEE Spectrum:  Velo3D, based in Santa Clara, Calif., has $22.1 million in venture investment to do something in 3-D printing: That makes it fourth among 2015’s best-funded stealth-mode tech companies in the United States, according to CB Insights. This dollar number is about all the hard news that has come out of this startup, founded in 2014 by Benyamin Butler and Erel Milshtein. But job postings, talks at conferences, and other breadcrumbs left along Velo3D's development trail—has created a sketchy outline of this company’s plans. Consider which 3-D printing technology is ready for disruption: metal. 3-D printing of plastics took off after 2009, when a key patent that covered the deposition technology expired; we now have desktop printers for 3-D plastic objects as cheap as $350. Printing of metal objects—done regularly in industry, particularly aerospace—uses a different, and, to date, far more expensive technology: selective laser sintering. This technology melts metal powders into solid shapes; it requires high temperatures, and far more complicated equipment than what’s found in the layering sort of printers used for plastic. The patent for this technology expired in early 2014—just before the formation of Velo3D. At the time, industry experts indicated that there wouldn’t be cheap metal printers coming anytime soon, but rather, would only come after “a significant breakthrough on the materials side,” OpenSLS’s Andreas Bastian told GigaOm in 2014. Could Velo3D’s founders have that breakthrough figured out?   Cont'd...

A problem-solving approach IT workers should learn from robotics engineers

Greg Nichols  for ZDNet:  Google-owned Boston Dynamics got some bad news in the final days of 2015.  After years of development and intensive field trials, the Massachusetts-based robotics company learned that the U.S. Marines had decided to reject its four-legged robotic mule, Big Dog. The reason? The thing is too damn noisy for combat, where close quarters and the occasional need for stealth make excess machine noise a liability. The setback reminded me of a story another group of robotics engineers told me about the development of their breakthrough machine, a robotic exoskeleton that enables paraplegics to walk and soldiers to hump heavy packs without wearing down. It also reminded me of a powerful approach to solving problems and dealing with setbacks that I've encountered again and again reporting on robotics. Ekso Bionics, which went public in 2015, invented the first viable untethered exoskeleton, one that doesn't need to be plugged into an external power source. Their achievement rests on one engineering breakthrough in particular, and to arrive at it Ekso's engineers had to do something that's surprisingly difficult but incredibly instructive for non-engineers--they had to change the way they thought about their problem.   Cont'd...  

New Product - P-Rob 2 Second Generation of the Collaborative Robot

P-Rob 2 is an all-in-one robotic solution combining robot arm, sensor technologies and software including an embedded PC as control unit. So all that needs to be done is plug-in and run.

Records 511 to 525 of 1320

First | Previous | Next | Last

Industrial Robotics - Featured Product

Zimmer Group - THE PREMIUM GRIPPER NOW WITH IO-LINK

Zimmer Group - THE PREMIUM GRIPPER NOW WITH IO-LINK

IO-Link is the first standardized IO technology worldwide for communication from the control system to the lowest level of automation.