Intel camera gives robots 3D vision

Bot-maker Savioke announces an open-source wrapper for Intel's RealSense Camera, adding another low-cost 3D sensing solution to the roboticist's toolkit. The wrapper will allow developers to make use of the RealSense Camera, which enables robots to sense rich three-dimensional environments. "Intel RealSense Cameras bring great low-cost depth sensing to robotics, in a platform that is widely available and easy to integrate using ROS," says Steve Cousins, CEO of Savioke. Until recently, bot makers looking to incorporate 3D sensing on the cheap have relied on a sensor made by Israeli company PrimeSense. But in late 2013 PrimeSense was acquired by Apple for $350M, an indication of just how much potential the Cupertino-based giant sees in 3D sensing technology. Since the acquisition, robot developers have been eager for a flexible and cheap depth sensor. Intel, meanwhile, is making an aggressive move into the world of robotics, and the company was thrilled to offer ROS support for RealSense. 

Developing Bio-Mechanical Hands

A small California company uses their expertise and the latest in reliable technology to design, prototype, and produce multifunctional bio-mechanical gloves aimed at providing users with a more normal life experience.

Service Robots are Thriving in Japan

This Article contains the interview of Japan Robot Association`s Administration Department General Manager Mr. Shigeaki Yanai.

Can a Robot be a Pet?

The negatives of having a live pet could drive more people to selecting a robotic pet. In the end, it will be a personal choice.

Humanoid robot negotiates outdoor, rough terrain with ease

Boston Dynamics have developed the "Atlas" robot a highly mobility, humanoid robot designed to negotiate outdoor, rough terrain.  Here is a video showing "Atlas" courtesy euronews.

Gecko-inspired technology for 'climbing' space robots

MIT researchers have designed a human-machine interface that allows an exoskeleton-wearing human operator to control the movements and balance of a bipedal robot. The technology could allow robots to be deployed to a disaster site, where the robot would explore the area, guided by a human operator from a remote location. "We'd eventually have someone wearing a full-body suit and goggles, so he can feel and see everything the robot does, and vice versa," said PhD student Joao Ramos of Massachusetts Institute of Technology's Department of Mechanical Engineering. "We plan to have the robot walk as a quadruped, then stand up on two feet to do difficult manipulation tasks such as open a door or clear an obstacle," Ramos said.   Cont'd...

Giving robots a more nimble grasp

Engineers use the environment to give simple robotic grippers more dexterity. Engineers at MIT have now hit upon a way to impart more dexterity to simple robotic grippers: using the environment as a helping hand. The team, led by Alberto Rodriguez, an assistant professor of mechanical engineering, and graduate student Nikhil Chavan-Dafle, has developed a model that predicts the force with which a robotic gripper needs to push against various fixtures in the environment in order to adjust its grasp on an object.

Robo-Sabotage Is Surprisingly Common

By Matt Beane for MIT Technology Review:  I think perhaps there’s something else at work here. Beyond building robots to increase productivity and do dangerous, dehumanizing tasks, we have made the technology into a potent symbol of sweeping change in the labor market, increased inequality, and recently the displacement of workers. If we replace the word “robot” with “machine,” this has happened in cycles extending well back through the Industrial Revolution. Holders of capital invest in machinery to increase production because they get a better return, and then many people, including some journalists, academics, and workers cry foul, pointing to the machinery as destroying jobs. Amidst the uproar, eventually there are a few reports of people angrily breaking the machines. Two years ago, I did an observational study of semiautonomous mobile delivery robots at three different hospitals. I went in looking for how using the robots changed the way work got done, but I found out that beyond increasing productivity through delivery work, the robots were kept around as a symbol of how progressive the hospitals were, and that when people who’d been doing similar delivery jobs at the hospitals quit, their positions weren’t filled.   Cont'd...

Festo's R&D Timeline - Part 2 - 2007-2009

More fascinating bionics projects from Festo.

3D printing is not the miracle we were promised

Mike Murphy for Quartz:  3D printing has been hailed as the future of manufacturing for years now. Consumers and investors were sold on the idea of being able to print anything at any time from a little box in their houses. But that Jetsons-like vision hasn’t come to pass. The 3D printers available to consumers are great for making small prototypes or tchotchkes. But they’re still slow, inaccurate and generally only print one material at a time. And that’s not going to change any time soon. That reality is setting in for 3D printer makers. Stratasys, which owns MakerBot and is one of the world’s largest manufacturers of commercial and industrial 3D printers, announced its fifth straight quarter of losses today. 3D Systems, which was founded by the man who invented 3D printing—Chuck Hull—isn’t faring much better. Wall Street’s interest in 3D printing seems to have peaked in the first week of 2014: The stock prices for both Stratasys and 3D Systems were at their highest on January 3 last year. Stratasys had completed the purchase of MakerBot—which has been called the “Apple” of 3D printing—about three months earlier, and it looked as if things were on the up. But a little over a year later, MakerBot laid off a fifth of its staff, closed its stores, and started focusing on selling to schools. As it stands, it seems that the market is retracting to industrial printers, for companies that benefit from rapidly prototyping objects. 3D printing makes a lot of sense when companies can quickly model and print their ideas—anything from new bike helmets to car doors or sprockets. These are where (relatively) cheap, disposable plastic models thrive, as companies can churn out all the models they need, and then turn to more traditional automated processes, like CNC milling or vacuum forming, to build their final product at scale, using materials that will actually last.   Cont'd...

What is the DARPA Robotics Challenge?

To make robots useful to first responders, they must be able to pick up and use a tool, turn a valve, and climb a ladder or stairs. The DRC is necessary to find ways where robots can be helpful in keeping humans out of danger.

YuMi ®: The World's First Truly Collaborative Dual Arm Robot

Pioneering an inherently safe solution for automating small parts assembly with human coworkers by redefining human-robot collaboration through a unique integration of components, speed, agility and motion control

3D Printing and Technology Fund Adds Robotics to the Mix

BY BRIAN KRASSENSTEIN for  There are several ways one can diversify their holdings within any market. An investor could simply research which firms are out there within a particular industry, like the 3D printing industry, and invest small amounts into each by purchasing shares. The easiest way, however, would be to find a fund that’s going to do all the work for you, managed by someone who likely has more experience in the market than you do.  There is currently only one main fund which concentrates their efforts primarily on the 3D printing space, the 3D Printing and Technology Fund (TDPNX), managed by CEO Alan M. Meckler, and his son John M. Meckler.  While the fund is currently down approximately 13% YTD, it has outperformed the two largest pure play 3D printing stocks, 3D Systems (NYSE:DDD) and Stratasys (NASDAQ:SSYS), significantly. 3D Systems is down over 44% on the year, and Stratasys down a staggering 58.5%. Today the fund is making a major change, one that the Mecklers feel should increase opportunity for investors. Up until this point, the fund allocated at least 80% of their capital to what they defined as ‘3D printing companies’ and ‘technology companies’. Today this changed, along with the fund’s official name. The fund’s new name will now be ‘3D Printing, Robotics and Technology Fund,’ while going forward 80% of their capital will now be allocated to what they define as ‘3D printing companies,’ ‘robotics companies’ and ‘technology companies.’   Cont'd...

Robotics Programs Increasingly Becoming Popular in China

Manny Salvacion for YIBADA:  Robotics education and its important application in engineering has reportedly taken off in China over the past years, as robots have become increasingly popular among people, the China Daily reported. Liang Yujun, head of the science education department at Beijing Youth Center, said that there are nearly 300 primary and middle schools in Beijing offering robotics-related curricula and activities now. Liang is in charge of robotics education in the capital and also the general referee of the national youth robotics activity. According to Liang, only about 20 schools had such curricula and activities in the early 2000s. The report said that about 3,000 registrants from 160 schools and extracurricular teams participated in the 2014 Beijing Student Robotic Intelligence Competition. "We have to hold the competition in one of the city's largest sports fields now, which can accommodate the increasing number of players," said Liu Yi, who is charge of running the competition at the Youth Center in Haidian District. Liu said that the competition, which began in 2012, reflects the dramatic growth of robotics education in the country. Cont'd...

Could This Machine Push 3-D Printing into the Manufacturing Big Leagues?

Neil Hopkinson, a professor of mechanical engineering at the University of Sheffield in the United Kingdom, has been developing the new method, called high-speed sintering, for over a decade.  Laser sintering machines build objects by using a single-point laser to melt and fuse thin layers of powdered polymer, one by one. Hopkinson replaced the laser system, which is both expensive and slow, with an infrared lamp and an ink-jet print head. The print head rapidly and precisely delivers patterns of radiation-absorbing material to the powder bed. Subsequently exposing the powder to infrared light melts and fuses the powder into patterns, and the machine creates thin layers, one by one—similar to the way laser sintering works, but much faster. Hopkinson’s group has already shown that the method works at a relatively small scale. They’ve also calculated that, given a large enough building area, high-speed sintering is “on the order of 100 times faster” than laser sintering certain kinds of parts, and that it can be cost competitive with injection molding for making millions of small, complex parts at a time, says Hopkinson. Now the group will actually build the machine, using funding from the British government and a few industrial partners.  Cont'd...

Records 571 to 585 of 666

First | Previous | Next | Last

Mobile & Service Robots - Featured Product

Swift Navigation's Duro Ruggedized RTK GNSS Receiver

Swift Navigation's Duro Ruggedized RTK GNSS Receiver

Duro® and Duro Inertial are enclosed dual-frequency RTK GNSS receivers. Designed and built to survive long-term, outdoor deployments, the easy-to-deploy Duro and Duro Inertial combine centimeter-accurate positioning with military ruggedness at a breakthrough price. Duro Inertial features an integrated IMU for continuous centimeter-accurate positioning in the harshest of outdoor deployments.