Parallella: $119 Parallel Computing Platform with 16-core Epiphany chip

Parallella Computer Specifications: The Parallella platform is an open source, energy efficient, high performance, credit-card sized computer based on the Epiphany multicore chips developed by Adapteva. This affordable platform is designed for developing and implementing high performance, parallel processing applications developed to take advantage of the on-board Epiphany chip. The Epiphany 16 or 64 core chips consists of a scalable array of simple RISC processors programmable in C/C++ connected together with a fast on chip network within a single shared memory architecture... ( cont'd ) A realtime raytracing example running on the 16-core Epiphany chip:

Raspberry Pi Model B+

From Eben Upton, Raspberry Pi Founder: This isn’t a “Raspberry Pi 2″, but rather the final evolution of the original Raspberry Pi. Today, I’m very pleased to be able to announce the immediate availability, at $35 – it’s still the same price, of what we’re calling the Raspberry Pi Model B+. The Model B+ uses the same BCM2835 application processor as the Model B. It runs the same software, and still has 512MB RAM; but James and the team have made the following key improvements: More GPIO. The GPIO header has grown to 40 pins, while retaining the same pinout for the first 26 pins as the Model B. More USB. We now have 4 USB 2.0 ports, compared to 2 on the Model B, and better hotplug and overcurrent behaviour. Micro SD. The old friction-fit SD card socket has been replaced with a much nicer push-push micro SD version. Lower power consumption. By replacing linear regulators with switching ones we’ve reduced power consumption by between 0.5W and 1W. Better audio. The audio circuit incorporates a dedicated low-noise power supply. Neater form factor. We’ve aligned the USB connectors with the board edge, moved composite video onto the 3.5mm jack, and added four squarely-placed mounting holes... ( cont'd )

Intro to Shape Memory Alloy Actuation Using Flexinol

From Jie Qi's projects page: Shape memory alloys (SMAs) are metals that change shape when heated up. They are wonderful actuators in that they are light, silent and can be "turned on" by simply running current through. The shape that they change to can also be set, though this process is a bit more tricky. Flexinol is a particular brand of nitinol, which is an SMA made of nickel and titanium, and is pre-set to contract about 10% of its original length when heated. In my projects, I generally used the 0.006" to 0.01" diameter, High-Temp wires. Since Flexinol draws a lot of current (about 300mA for the diameters I used), you need a strong power supply like a wall supply or a good lithium-ion battery. I've used from 3.7V up to 6V (any more and my Flexinol wires would start overheating). To turn the Flexinol on, I would simply short the ends of the wire to the power. For digital control, I used a standard MOSFET circuit which is a digital switch that can be turned on and off using a microcontroller... ( cont'd )

Interview with e-NABLE Founder Jon Schull

By far, one of the most inspirational and impressive projects thats come from the 3D printing/DIY community has been the work were seeing on open-source assistive devices, and one online organization that is playing a major role in making this happen is e-NABLE, a group started by Dr. Jon Schull of Rochester Institute of Technology.

BugJuggler: Project to build 70ft tall robot that juggles cars

Project Overview: BugJuggler will use a diesel engine to generate hydraulic pressure. An operator located in the robot’s head will be able to control its motions using a haptic feedback interface connected to high-speed servo valves. Hydraulic accumulators - essentially storage batteries for hydraulic fluid - will allow for the rapid movement required for the robot to juggle cars or other large, heavy objects.  The first stage of the BugJuggler project will be construction of a working 8ft tall single arm proof-of-principle juggler able to toss and catch a 250lb mass... ( cont'd )

Intel's 3-D Printed Robot "Jimmy"

From Wired: Intel describes Jimmy as a research robot, but a less sophisticated version of the adorable droid will go on sale later this year for $1,600. The caveat is that you will have to 3D print your Jimmy. The 3D printing blueprints will be available without charge, but to construct the robot you will also need to purchase a kit from Intel that will contain all the parts of Jimmy that aren't printable, including motors and an Intel Edison processor.. ( cont'd )

Carl Dekker of Met-L-Flo Discusses Challenges and Opportunities Arising in Additive Manufacturing

The industry needs standards for workforce development training, process repeatability and reliability, and process control.

USB 3.0 Steps Up To The Plate

Upgrading existing systems or basing new designs on plug-and-play USB3 Vision-compliant video interfaces, designers can produce a winning combination of performance, ease-of-use, and cost advantages.

The Emergence and Implications of Nanomanufacturing

Obviously, nanomanufacturing will require new kinds of skills that are needed for these high-tech manufacturing jobs, which require specialized education, such as powder processing and metallurgy extraction.

Open-source 3D Printed Life-size Robot

From InMoov's homepage: Gael Langevin is a French modelmaker and sculptor. He works for the biggest brands since more than 25 years. InMoov is his personal project, it was initiated in January 2012 InMoov is the first Open Source 3D printed life-size robot. Replicable on any home 3D printer with a 12x12x12cm area, it is conceived as a development platform for Universities, Laboratories, Hobbyist, but first of all for Makers. It’s concept, based on sharing and community, gives him the honor to be reproduced for countless projects through out the world... ( cont'd )

3D Video Capture With Three Kinects

From Doc-Ok.org: Video from a capture space consisting of one Oculus Rift head-mounted display and three Kinect 3D cameras set up in an equilateral triangle, with each Kinect approximately 2m from the center point. The resulting 3D video data is merged with a virtual 3D model of an office environment... (cont'd)

What is Rapid Prototyping?

Whether a robot is needed to prototype a part or a robot is the object being prototyped, Rapid Prototyping is the future.

Design With Touchless Rotary Sensors

Touchless rotary sensors are position sensors that use a position marker attached to an applications rotating part plus a sensor to measure the markers angle.

Graphene - The New Magical Material

Graphene may possibly be the future replacement for silicone. Its a two-dimensional material that measures just one atom thick and has a breaking strength 300 times greater than steel.

Additive Manufacturing and 3D Printing The Future of Manufacturing

The next chapter in the industrial revolution is 3D printing, delivering a huge impact on additive manufacturing. It will not only create thousands of new jobs, but it will create many new businesses.

Records 631 to 645 of 659

First | Previous | Next | Last

Personal & Service Robots - Featured Product

Swift Navigation's Duro Ruggedized RTK GNSS Receiver

Swift Navigation's Duro Ruggedized RTK GNSS Receiver

Duro® and Duro Inertial are enclosed dual-frequency RTK GNSS receivers. Designed and built to survive long-term, outdoor deployments, the easy-to-deploy Duro and Duro Inertial combine centimeter-accurate positioning with military ruggedness at a breakthrough price. Duro Inertial features an integrated IMU for continuous centimeter-accurate positioning in the harshest of outdoor deployments.