Carnegie Mellon robotics selected for research projects totaling more than $11 million

Carnegie Mellon University's National Robotics Engineering Center (NREC) has been selected as a prime contractor or subcontractor on four major new federal research projects totaling more than $11 million over the next three years. The projects range from research on a wheel that can transform into a track to automated stress testing for critical software.  Herman Herman, NREC director, said the center has hired 10 new technical staff members in the past six months and anticipates hiring another five-to-10 staff members in the coming months to augment its existing staff of about 100.  "For the past 20 years, NREC has been an important national resource, combining unique technical skills and testing capabilities to solve problems that other groups can't," said Martial Hebert, director of CMU's Robotics Institute, which includes the NREC. "These new projects are a reminder that NREC continues to advance the art and science of robotics and that it remains a vital part of Carnegie Mellon's Robotics Institute."    Full Press Release:  

User Case Study: MapleSim Used To Speed Up Development Of High-fidelity Robotic Manipulator Models

Using MapleSim, engineers created multiple models of robotic manipulator in time previously required to create just one model.

Would you buy meat from a robot butcher?

Greg Nichols for The Kernel:  In an era when hunks of cow and pig are packaged and distributed like Amazon Prime parcels, butchering has retained a surprising degree of its old-world craftsmanship. Workers armed with knives and hooks anachronistically slice flesh from bone the same way they have for hundreds of years. That’s because cutting meat—be it on an assembly line or in a niche shop in Santa Monica, California, or Brooklyn, New York—is a skill that requires exceptional dexterity, a good eye, and a honed tactile sense for texture and firmness. Industrial robots may be perfectly suited to welding chassis and painting cars, but they don’t have the touch to cut a succulent T-bone steak. That’s likely to change. JBS, one of the country’s largest meat processors, recently acquired a controlling share of Scott Technology, a New Zealand-based robotics firm. Now JBS is looking at ways to automate its facilities. Robots don’t sleep, don’t collect overtime, and don’t suffer the horrific repetitive stress injuries that plague meat workers. Meat is already packed using machines, and if engineers can figure out how to make automated systems that approximate the deft hands of a butcher, there’s little question giants like JBS, Cargill, and Tyson will replace many of their line workers with robots. In the next decade, adroit robots that can see, feel, and move like humans may finally kill off the butcher.   Cont'd...

Mercedes Boots Robots From the Production Line:

By Elisabeth Behrmann & Christoph Rauwald for Bloomberg Business:  “Robots can’t deal with the degree of individualization and the many variants that we have today,” Markus Schaefer, the German automaker’s head of production, said at its factory in Sindelfingen, the anchor of the Daimler AG unit’s global manufacturing network. “We’re saving money and safeguarding our future by employing more people.” Mercedes’s Sindelfingen plant, the manufacturer’s biggest, is an unlikely place to question the benefits of automation. While the factory makes elite models such as the GT sports car and the ultra-luxury S-Class Maybach sedan, the 101-year-old site is far from a boutique assembly shop. The complex processes 1,500 tons of steel a day and churns out more than 400,000 vehicles a year. That makes efficient, streamlined production as important at Sindelfingen as at any other automotive plant. But the age of individualization is forcing changes to the manufacturing methods that made cars and other goods accessible to the masses. The impetus for the shift is versatility. While robots are good at reliably and repeatedly performing defined tasks, they’re not good at adapting. That’s increasingly in demand amid a broader offering of models, each with more and more features.   Cont'd...

ROS Navigation Basics

If you've worked with ROS and robotics, you've probably heard of gmaping, localization, SLAM, costmaps and paths, but what does all this mean? They are more than just robot buzz words - these allow a robot to get from one point to another without bumping into obstacles, and in this tutorial, we'll be covering some of the key concepts in what makes up an autonomous robot.

Republican-Leaning Cities Are At Greater Risk Of Job Automation

By Jed Kolko for Five Thirty Eight:  More and more work activities and even entire jobs are at risk of beingautomated by algorithms, computers and robots, raising concerns that more and more humans will be put out of work. The fear of automation is widespread — President Obama cited it as the No. 1 reason Americans feel anxious about the economy in his State of the Union address last month — but its effects are not equally distributed, creating challenges for workers and policymakers. An analysis of where jobs are most likely to face automation shows that areas that voted Republican in the last presidential election are more at risk, suggesting that automation could become a partisan issue. So-called “routine” jobs — those that “can be accomplished by following explicit rules” — are most at risk of automation. These include both “manual” routine occupations, such as metalworkers and truck drivers, and “cognitive” routine occupations, such as cashiers and customer service reps.1 Whereas many routine jobs tend to be middle-wage, non-routine jobs include both higher-wage managerial and professional occupations and lower-wage service jobs.   Cont'd...

Japanese Firm To Open World's First Robot-run Farm

Spread , a vegetable producer, said industrial robots would carry out all but one of the tasks needed to grow the tens of thousands of lettuces it produces each day at its vast indoor farm in Kameoka, Kyoto prefecture, starting from mid-2017. The robots will do everything from re-planting young seedlings to watering, trimming and harvesting crops. The innovation will boost production from 21,000 lettuces a day to 50,000 a day, the firm said, adding that it planned to raise that figure to half a million lettuces daily within five years. “The seeds will still be planted by humans, but every other step, from the transplanting of young seedlings to larger spaces as they grow to harvesting the lettuces, will be done automatically,” said JJ Price, Spread’s global marketing manager. The new farm – an extension of its existing Kameoka farm – will improve efficiency and reduce labour costs by about half. The use of LED lighting means energy costs will be slashed by almost a third, and about 98% of the water needed to grow the crops will be recycled. The farm, measuring about 4,400 sq metres, will have floor-to-ceiling shelves where the produce is grown... ( cont'd )

Getting Started with Collaborative Robots - Part 5 - Get Management On Board with Robots

Even if you are part of management yourself, you will need to justify the integration of the robot with solid arguments. We suggest the "Scotty maneuver": under-promise, over-deliver!

Humanoid robots in tomorrow's aircraft manufacturing

From Phys.Org:  Developing humanoid robotic technology to perform difficult tasks in aircraft manufacturing facilities is the goal of a four-year joint research project, which is being conducted by the Joint Robotics Laboratory (CNRS/AIST) and Airbus Group. It will officially be launched on 12 February 2016 at the French Embassy in Tokyo. The introduction of humanoids on aircraft assembly lines will make it possible to relieve human operators of the most laborious and dangerous tasks, thus allowing them to concentrate on higher value-added ones. The primary difficulty for these robots will be to work in a confined environment and move without colliding with the numerous surrounding objects. This is the first issue researchers will have to solve by developing new algorithms for the planning and control of precise movements.   Cont'd...  

Earthbound Robots Today Need to Take Flight

Neil Tardella for IEEE Spectrum:  The DARPA Robotics Challenge this past summer showcased how far humanoid robots have come—but also how far they have yet to go before they can tackle real-world practical applications. Even the best of the DRC behemoths stumbled and fell down, proving, as IEEE Spectrum noted at the time, that “not walking is a big advantage.” There is, in fact, a new not-walking way for robots to perform many kinds of tasks better and faster: the dexterous drone. A lightweight flying platform with a robotic arm combines the strengths of two rapidly developing, parallel industries. Aerial drones like quadcopters and octocopters have in just the past few years emerged as a viable industrial and consumer product with substantial maneuverability, versatility, and durability. Yet the drones of today are mostly just flying bodies with no arms or hands.   Cont'd...

Smart Factories Need Smart Machines

Industry 4.0 Smart Factories and Smart Machines continue to drive dramatic efficiency improvements across the supply chain, within the factory and inside machines.

"It's quite large:" Exact Automation showcases world's largest robot

JULIE COLLINS for Fox 6 Now:  The world's largest robot is here in Milwaukee. But folks looking to get a glimpse of the giant piece of technology better act fast.With precision and ease, this robot can pick up an 800-pound motorcycle! "Well you can't help but be astounded by it, quite frankly. It's quite large," said James Schneberger with New Berlin Plastics, Inc. And it's right here in Milwaukee at Exact Automation. The company purchased the machine from FANUC -- a Japanese company. It arrived in November, but Exact Automation had work to do before it got here. "We had to pour new concrete in the building. We had to put 100,000 pound of concrete to prepare as a base for this robot because it weighs so much," said Exact Automation Owner Jim Mevis. Schneberger works around robots -- but nothing this large. Weighing in at 26,000 pounds, Schneberger is astonished at its size.   Cont'd...

Five Business Tips for Robot Integrators

Manufacturing partners need you just as much as you need them. Stay loyal because they can really help you in the early days.

Distributed Control Systems Simplify the Three C's of Robotics

Borrowed from the military, Communications, Command and Control (sometimes called 3C), are the three key organizing principles for acquiring, processing and disseminating information

Robotics in the Folding Carton Industry: The Human Factor

As they watch fellow companies successfully use robotics, see what it takes to switch to a fully or semi-automated system and be reassured by a human back-up system, it seems inevitable that more folding carton manufacturers will soon be adopting robotics.

Records 256 to 270 of 1068

First | Previous | Next | Last

Industrial Robotics - Featured Product

igus® Robolink: Articulated joint modules for robots. Lightweight. Compact.

igus® Robolink: Articulated joint modules for robots. Lightweight. Compact.

Robolink: Articulated joint modules for robots. igus® now offers a lightweight, maintenance- and corrosion-free range of robot joints for humanoid systems or other automated applications. The carbon-fiber plastic joints can rotate and oscillate freely via four wire ropes. No more expensive milling, cutting or DIY systems. Moving mass is reduced to a minimum. The actuators (engines, pneumatics and hydraulics) and the control module (DP, PC) are kept separate. Contact igus® for more information and free samples.